Instituto de u‘.

[;umputal;ﬁﬁ

UNIVERSIDADE FEDERAL FLUMINENSE

Karen da Silva Figueiredo

MODELING AND VALIDATING NORMS IN
MULTI-AGENT SYSTEMS

Niterdi, Rio de Janeiro, Brazil
2011

Karen da Silva Figueiredo

MODELING AND VALIDATING NORMS IN
MULTI-AGENT SYSTEMS

Dissertation presented to the Computer
Science Department of the
Universidade Federal Fluminense
(UFF) in partial fulfilment of the

requirements for the Master Degree.

Advisor:
Viviane Torres da Silva

Niterdi, Rio de Janeiro, Brazil
2011

MODELING AND VALIDATING NORMS IN
MULTI-AGENT SYSTEMS

Dissertation presented to the Computer
Science Department of the
Universidade Federal Fluminense
(UFF) in partial fulfilment of the
requirements for the Master Degree.

Approved by:

Prof. DSc. Viviane Torres da Silva (Advisor) — IC/UFF

Prof. DSc. Christiano de Oliveira Braga — IC/UFF

Prof. DSc. Ricardo Choren Noya — IME

Prof. DSc. Leonardo Gresta Paulino Murta — IC/UFF

Niterdi, Rio de Janeiro, Brazil
2011

ACKNOWLEDGEMENTS

To Krsna, the Supreme Creator and Director of the Universe, | thank You for
allowing me to achieve this one more stage of my life. To Him all my humble
obeisance!

To Prabhupada, my Original Guru, | thank You for inspiring me trough Your
example. Every time | felt like "giving up" | remembered of Your story and how all of
this is just a tiny little grain of sand compared to it.

To my mother and grandmother, the sunshine of my life, | thanks for being so
kind, careful and adorable even when | couldn't correspond to you.

To all my friends, especially to Isabela, Leonardo, Lilia, Larissa and Caitanya,
for being there for me when “the rain started to pour".

To my boyfriend for being so understanding and lovely all the time. Thanks for
being part of my life so intensely.

To the teachers Viviane Silva (master advisor), Aline Vasconcelos (graduation
advisor), Leonardo Murta and Ana Cristina Bicharra for all the support and incentive
during this journey, especially to Viviane, for all the patience that you had with me.

Finally, to all the colleagues of course and friends that | met in Niteroi for make

living here more easy and funny.

tasmac chastramh pramanarn te
karyakarya-vyavasthitau
Jjhatva sastra-vidhanoktam

karma kartum iharhasi

“One should therefore understand what is duty and what is not duty by the norms of
the scriptures. Knowing such rules and regulations, one should act so that he may gradually
be elevated.” — Krsna, Bhagavadgita As It Is (Prabhupada, 1968)

ABSTRACT

The designers of open multiagent systems have to deal with the possibility that
agents may not behave as they are supposed to. Norms provide a means for
regulating agents’ behavior by describing their permissions, prohibitions and
obligations. In this dissertation we propose a normative modeling language called
NormML that makes possible the modeling of the main elements that compose the
norms. The dissertation presents not only the abstract syntax but also the concrete
syntax of NormML used by designers to model the norms of multi-agent systems.

It is also the aim of this work to present a mechanism used to validate the
norms modeled at design time. The validation process has two steps. First, the
mechanism checks if the models respect the constraints defined by the normative
language and, then, checks for conflicts among the modeled norms. Two norms are
in conflict if, for instance, one states a permission and another a prohibition to a given
agent to execute the same action at the same time period.

The modeling and the validation of the norms are supported by a tool called
NormML Tool Kit that offers a set of plugins to the Eclipse IDE platform with the aim
to make possible the creation and validation of the norms modeled with NormML.

Keywords: Norm, Multi-agent System, Modeling Language, Modeling, Metamodel,

Validation, Conflict.

LIST OF FIGURES

Figure 2.1 Example of metamodel and model representations adopted in this work
Figure 2.2 SecureUML metamodel

Figure 3.1 Conference management process of the local conference

Figure 4.1 The NormML metaclasses used to define the deontic concepts of a norm
Figure 4.2 The NormML metaclasses used to define the involved entities of a norm
Figure 4.3 The NormML metaclasses used to define the action of a norm

Figure 4.4 The NormML metaclasses used to define the resource of a norm
Figure 4.5 The NormML metaclasses used to define the activation constraints of a
norm

Figure 4.6 The NormML metaclasses used to define the operands of an If constraint
of a norm

Figure 4.7 The NormML metaclasses used to define the sanctions of a norm
Figure 4.8 The NormML metaclasses used to define the context of a norm

Figure 4.9 Norm N1

Figure 4.10 Norm N2

Figure 4.11 Norms N3 and N4

Figure 4.12 Web store norms graphical model

Figure 6.1 NormML graphical model of N1 and N2

Figure 6.2 NormML graphical model of N3, N7 and N8

Figure 6.3 NormML graphical model of N4, N5 and N6

Figure 6.4 NormML graphical model of N9, N10 and N11

Figure 7.1 The NormML Tool Kit process

Figure 7.2 The NormML Editor wizard

Figure 7.3 Eclipse perspective of the NormML Editor plugin

Figure 7.4 Creation and edition of N1 in the NormML Editor plugin

Figure 7.5 OCL invariant example in the Ecore editor

Figure 7.6 N1 violation of “NormContextCanNotBeNull” invariant

Figure 7.7 N1 violation of “NormContextCanNotBeNull” invariant result

Figure 7.8 NormML Conflict Checker menu

Figure 7.9 Check for conflicts result of the NormML Conflict Checker plugin

Figure 7.10 NormML metamodel described as a class diagram with EOS

Figure 7.11 N1 abstract model described as an object diagram with EOS
Figure 7.12 XSL template that implements Rulel

Figure 7.13 Main OCL operation of the check for conflicts described with EOS
Figure A.1 Conserved elements of the SecureUML metamodel

Figure G.1 N1 and N2

Figure G.2 N3

Figure G.3 N4 and N5

Figure G.4 N4 and N6

Figure G.5 N7

Figure G.6 N8

Figure G.7 N9 and N10

Figure G.8 N9 and N11

LIST OF TABLES

Table 2.1 Resources and their actions

Table 4.1 Resources and their actions

Table 5.1 Main elements of a norm

Table 5.2 Checking for conflicts analysis

Table 6.1 Main elements of the norms of the local conference management system
Table B.1 NormML dialect action hierarchy

Table D.1 NormML semantically opposite actions

Table E.1 NormML graphical model stereotypes

LIST OF ABBREVIATIONS

AML — Agent Modeling Language

AORML — Agent-Object Relationship Modeling Language
API — Application Programming Interface

AUML - Agent Unified Modeling Language

DSL — Domain-specific Language

EMF — Eclipse Modeling Framework

EOS - Eye OCL Software

IDE — Integrated Development Environment

MAS — Multi-agent System

MAS-ML — Multi-agent System Modeling Language
MASQ — Multi-Agent System based on Quadrants

MOF — MetaObject Facility

NormML — Normative Modeling Language

OCL - Object Constraint Language

O-MASE - Organization-based Multiagent System Engineering
OMG - Object Management Group

PASSI — Process for Agent Societies Specification and Implementation
RBAC — Role-based Access Control

ST — Secure Tropos

UML - Unified Modeling Language

XML — Extensible Markup Language

XSLT - Extensible Stylesheet Language Transformations

10

SUMMARY

CHAPTER 1: INTRODUCTION ...oiiiie et 12
1.1 OBJECTIVES AND MAIN CONTRIBUTIONS.uuutiiiiiiiiiiiiiiiiiiiiiiiiiiiniennennns 13
1.2 STRUGCTUREuuiiiiiiiii e ssssssssssssssssssssssnnsnsnnnnnnnnnnns 14
CHAPTER 2: BACKGROUND......cciiiii e 16
2.1 AGENTS AND MULTI-AGENT SYSTEMS......cooiiiiii, 16
2.2 MODELS, METAMODELS AND SYNTAXESccooii i, 18
2.3SECURE UML ..o 20
CHAPTER 3: NORMML: A NORMATIVE MODELING LANGUAGE....................... 23
3.1 MAIN ELEMENTS OF ANORMcoiiiiiiiiiiiieee ettt 24
3.2 THE NORMML METAMODELcotiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 27
G2 R B = To | (o oo o o= o | T 30
3.2.2 INVOIVEA ENTILIES....ceeiiiiiiie e e e e e e e aaean s 30
.23 ACHIONS. ..o 32
3.2.4 ACHIVAtION CONSIIAINTS.iiiieeieeeeiiiiiiee e e et e e e e e e e e e e e e e eeaean s 35
3.2.5 SANCHIONS....coiiiiiiiiee e 37
T G O 0] 4 (=) q PR 37
3.2.7 Modeling norms With NOIMMLoiiiiiiiiiece e 38
3.3 THE WELL-FORMEDNESS RULES OF NORMML METAMODEL.................... 40
3.4 CHECKING FOR CONFLICTS ..ottt 44
3.4.1 CoNteXt @NAIYSIS ...ceeiiiiiiiiiiieeie e 45
3.4.2 Involved entities analySiS............uuuiiiiiie e 46
3.4.3 Deontic CoNCEPL @NAIYSIS......cccviiiiiiiiiiiiiiiiiiiieeeeeeeeee e 47
3.4.4 ACLION @NAIYSIS ...cooeiiiiiiii e ———— 47
3.4.5 Activation constraints analysSiS............coouiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 48
3.4.6 SANCLIONS @NAIYSIS.....uuuiieie e e e e e e e e e e e 49
3.5 THE NORMML CONCRETE SYNTAX ..citttiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee e 50
3.5.1 Creating the graphical models...........ccoooiiiiiiiiiiii e, 52
3.5.2 Mapping from concrete to abstract SyNtaX..........ccceeevvvvvevviiiiiieeeeeeeeeiiinnn 54
CHAPTER 4: RELATED WORK ..o 58
4.1 MAIN ELEMENTS OF ANORMooiiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 58
4.2 CHECKING FOR CONFLICTS ...oiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt 63
4.2.1 Modeling languages, methodologies and organizational models 63
4.2.2 Other approaches that deal with norm conflicts..........ccccccvviviiiiiiiiiiiiiinnnn. 65
CHAPTER 5: EXAMPLE APPLICATION ..o 67

5.1 CONFERECE MANAGEMENT SYSTEMccoviiiiiiii i, 67

11

CHAPTER 6: EVALUATION. ..ottt ittt ettt a e e e e e snaaaaeeeeeens 70
6.1 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH
INORMML L.ttt e e e e e e st e e e e e e e e s s s s bt ae e e e e eeeeeeannnsbbaneeeeeeas 70
6.2 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEMWITH
@] 4| U TS PRRRR 78
6.3 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEMWITH
AN 1 PSSR 79
6.4 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEMWITH
OPERA ..ottt e e et e e e e e e e aa bt raaaaeaaeaans 80
6.5 FINAL REMARKS ..o e e e e e e e e e e eaaeees 81

CHAPTER 7: THE NORMML TOOL KIT ..o 82
7.1 MODELING NORMS ..ottt ittt ettt e e r e e e e e e e s 83
7.2 CHECKING (CONCRETE) MODELS......cooi it 85
7.3 CHECKING FOR CONFLICTS ...ttt ettt 88

7.3.1 Transforming concrete to abstract modelscccoovvieiiiiiiiiiiiiiieee e, 89
7.3.2 Running operations to check the abstract models...........cccccccvceiiiieeeeninnnnnns 92

CHAPTER 8: CONCLUSION AND FUTURE WORKccooiiiiiiiiiiieeee e 94

REFERENGCES.ttt e e e e e e e s st e e e e e e e e e s s nsssbareeeeeeeeeenanns 96

APPENDIX A: THE NORMML EXTENSION OF SECUREUMLccccvvvveeeeennnns 104

APPENDIX B: NORMML DIALECT ACTION HIERARCHYccooiiiiiiiiiiiieeee e 107

APPENDIX C: THE WELL-FORMEDNESS RULES OF NORMMLcccvvvn. 109

APPENDIX D: SEMANTICALLY OPPOSITE ACTIONS. ..o, 114

APPENDIX E: LIST OF THE GRAPHICAL MODEL STEREOTYPES OF THE
NORMML CONCRETE SYNTAX . ittt 115

APPENDIX F: FROM NORMML CONCRETE MODELS TO ABSTRACT MODELS

APPENDIX G: LOCAL CONFERENCE MANAGEMENT SYSTEM ABSTRACT
IMODELS ...t e et e e e et e e e enene 120

APPENDIX H: CONFLICT CASES ... 128

CHAPTER 1: INTRODUCTION

Open multi-agent systems (MAS) are societies in which autonomous,
heterogeneous and independently designed agents can work towards similar or
different ends (Lopez y Lopez, 2003). In order to cope with the heterogeneity,
autonomy and diversity of interests among the different members, governance (or
law enforcement) systems have been defined. A governance systems define a set of
norms (or laws) that must be followed by the system entities.

According to Psychology and Sociology, norms are the rules that a society or
a group uses to define appropriate and inappropriate values, beliefs, attitudes and
behaviors (Deutch and Gerard, 1955). In MAS, Norms are used to regulate the
behavior of the agents by describing the actions that can be performed or states that
can be achieved (permissions), actions that must be performed or states that must be
achieved (obligations), and actions that cannot be performed or states that cannot be
achieved (prohibitions). They represent a way for agents to understand their
responsibilities and the responsibilities of the others. Norms are used to cope with the
autonomy, different interests and desires of the agents that cohabit the system.

Norms can be defined at design time together with the modeling of the system,
or created at runtime by agents that have the power to do so (L6pez y Lopez, 2003).
In this dissertation we focus on the description of norms at design time, thus; the
creation of norms at runtime is out of the scope of this work.

The modeling of norms is an important part of the specification of a system

and should be treated as an essential task of MAS design for two reasons:

I. Norms refer to actions, entities and resources that compose a system. So, the
refinement of the system may influence the norms and the definition of a new
norm will only be possible if the actions, entities and resources being

mentioned in the norm are being considered in the system design.

Il. Norms’ conflicts can cause the redesign of a system. During the specification
of the system norms conflicts may arise. Two norms are in conflict if, for
instance, one gives a permission and another a prohibition to an agent to

execute the same action at the same time period.

13

When norms are defined at design time some of those conflicts can be
detected and solved by, for instance, amending the conflicting norms, which
might cause the system’s redesign (by the inclusion of new actions and
agents, for example). By solving at least part of the conflicts at design time, it
is possible to reduce the time the agents will spend executing such task at
runtime.

Due to the interdependency between the modeling of norms and the modeling
of the elements of the system and the importance of finding out conflicts and solving
them at design time, it is important that the modeling languages and the notations
used by methodologies and organizational models to model MAS make possible the
modeling of the norms together with the modeling of the whole system and also
provide mechanism for solving the conflicts at design time.

Although there are many modeling languages and notations, proposed by
methodologies and organizational models, that provide support to the modeling of
norms, none of the analyzed approaches provide support to the modeling of all
elements that compose a norm identified during this work. Moreover, those
approaches also fail on providing support for the verification of conflicts among the

norms modeled at design time.

1.1 OBJECTIVES AND MAIN CONTRIBUTIONS

Given the foregoing, the goal of this work is to develop a modeling language
called NormML that is able to model the norms of a MAS and to check the conflicts
between these norms at design time. In order to do so, we first identify the main
elements that compose a norm, by analyzing the literature on specification and
implementation of norms, to guarantee that the proposed modeling language widely
supports the description of norms.

The novelty of our approach is threefold: (i) the modeling language itself, to
model norms and its main elements; (i) a mechanism for checking for conflicts
between norms that considers the main elements that compose the norms; and (iii) a

tool to support the modeling of norms using NormML and can automatically validate

14

the models according to the metamodel of the language and check conflicts between
norms at design time.

This work also aims at comparing the proposed modeling language NormML
with related work to: (i) investigate if the elements that compose norms can also be
modeled by using the MAS modeling languages and notations provided by
methodologies and organizational models; and (ii) to explore the MAS languages,
methodologies and organizational models in order to find out if and how they give

support to the checking of conflicts at design time.

1.2 STRUCTURE

The dissertation is organized as follows: Chapter 2 provides some background
material for the rest of this work.

Chapter 3 presents the normative modeling language NormML and identifies
the main elements that compose a norm. The metamodel of the language is
described and the mechanism used to validate the models and check for conflicts
between the modeled norms is detailed. Also, a graphical notation for NormML
models is proposed together with a mapping between the graphical notation and the
abstract notation of the language.

Chapter 4 discusses the support given by the modeling languages and the
notations provided by the methodologies and organizational models analyzed to
model norms and to check norm conflicts. Also, other related approaches in norms
conflicts are addressed.

In Chapter 5 an example of application of norms in a MAS is presented. The
application is situated in the area of Conference Management and is used in Chapter
6 to evaluate the proposed modeling language.

In Chapter 6 we use NormML to model the application Conference
Management presented in Chapter 5 and to check for norms conflicts. A comparison
between NormML and some related MAS modeling approaches is traced to evaluate
our approach.

Chapter 7 presents the NormML Editor and the NormML Conflict Checker
plug-ins. They were developed to the Eclipse IDE (The Eclipse Foundation, 2011)

15

platform with the objective to support the modeling and validation of norms using
NormML and the checking for conflicts in NormML models. Chapter 8 concludes and

describes some future works.

CHAPTER 2: BACKGROUND

In this chapter we briefly provide background material for the rest of this work.
First, in Section 2.1 we introduce the terms agents and multi-agent systems since
they concern the scope of this work.

Section 2.2 introduces the notions of models, metamodels and syntaxes that
are necessary to understand the design of NormML.

In this dissertation we want to explore the modeling of norms using RBAC
concepts. So, in Section 2.3 we introduce SecureUML (Basin et al., 2006), a Domain-
specific Language (DSL) for modeling RBAC policies. The reasons why SecureUML
was chosen are: it has been applied successfully both in academic projects (Basin et
al., 2006) and industrial ones (Clavel et al., 2008); it has a well-defined syntax, given
by its metamodel; it has a formal semantics (Basin et al., 2009); and it is designed

specifically for RBAC modeling.

2.1 AGENTS AND MULTI-AGENT SYSTEMS

A popular definition for software agent is “a software program that does
something, often on behalf of a person or other agent” possibly by: (i) involving
automated tasks; (ii) using some intelligence; (iii) communicating with the user or
other agents in a cooperative and coordinated manner; (iv) learning and changing its
behavior over time; and (v) operating on its own initiative (OMG Agent Platform
Special Interest Group, 2011). Bradshaw (1997) lists a set of properties that agents
have, proposed at first by Etzioni and Weld (1995) and Franklin and Graesser (1996),

which are commonly accepted by the researches of the area. Those properties are:

= Autonomy: the ability to execute its own tasks and to achieve its own goals

without necessarily requiring user influence;

17

» Collaborative behavior: the capability of working together with other agents
(by cooperating, negotiating, coordinating and delegating tasks) to achieve a

common goal, i.e., the goal of the system where they are interacting;

» Reactivity: the ability to sense real-time domain events and act triggered by

them;

= Communicability: the ability to communicate with humans, other agents,

legacy systems, and information sources;

» Personality: the capability of manifesting the believable attributes such as

emotions;

= Adaptability: the ability to learn and evolve based on their experiences, other

agents experiences and changes of the host place; and

= Mobility: the capability of moving from one host place to another.

A system may contain one or more agents, in the latter case, we call it a multi-
agent system (MAS). A MAS consists of agents, objects and organizations.
Organizations can be understood from two perspectives: first as the process of
grouping a set of agents and other organizations (i.e. sub-organizations), and
second, as an entity with its own goals (Dignum, 2009). Agents, objects and
organizations are immersed in environments, i.e. a local host that provide resources
and offer services (Silva et al., 2003). Each agent stores information about the states
of the environment it inhabits and about other entities of the system. Those nested
information are called the agent’s beliefs (Wooldridge, 1997).

Agents are goal-oriented entities, i.e., they execute in order to achieve a set of
goals that represent the agent’s desires (Rao and George, 1995). Agents can
execute a set of communicative actions (as the sending and receiving of messages
mentioned above) and non-communicative actions to achieve their goals. When a
set of actions are executed with the specific objective of achieving a certain goal, it is

called a plan.

18

Due to its mobility, agents can move from an organization to another and from
an environment to another. When an agent enters an organization, it must commit to
(at least) one role described in the organization. A role restricts the behavior of an
agent in the organization, defining its social behavior (Silva et al., 2003). The
interactions between agents of an organization occur through the roles played by
them. Each role defines a set of protocols to regulate its interactions. Protocols are
composed of dialogue structures, i.e. messages that the agent playing the role can

send or receive.

2.2 MODELS, METAMODELS AND SYNTAXES

A model is an abstraction of a phenomenon of the real world. A modeling
language provides a vocabulary (concepts and relations) for creating models. Such
vocabulary is described by the metamodel of the modeling language which elements
formalize the language concepts and their relationships.

A metamodel may include constraints that associate semantic restrictions to
the elements of the metamodel. Those constraints specify additional properties that
the models must fulfill as instances of the metamodel, i.e. specify the well-
formedness conditions (or well-formedness rules) of the models with respect to its
metamodel and the consistency conditions between metamodel concepts. A model
always conform to a single metamodel.

Meta-Obiject Facility (MOF) is a standard from the Object Management Group
(Object Management Group, 2011a) that states an abstract language for describing
structures of objects that can be represented in a given language, i.e. MOF specifies
a language for metamodels description. MOF corresponds to the top level (M3) of the
four layer architecture of metamodeling illustrated in Figure 2.1.

Each model in a layer My is an instance of a model of My.;. Thus, in the layer
M2 languages metamodels can be described using MOF as metalanguage (i.e. the
language used to describe the metamodel vocabulary), e.g. the UML metamodel

(Object Management Group, 2011b) is an instance of the MOF meta-metamodel.

19

Figure 2.1 Example of the MOF architecture

In the M1 layer, domain models can be defined according to the metamodel of
M2, e.g. an UML class diagram is an instance of the UML metamodel. And in the MO
layer instances of the elements of M1 can be described, e.g. an UML Object Diagram
is an instance of the UML Class Diagram.

Another approach is to use UML as metalanguage in the top of the
metamodeling architecture. By chosing UML as metalanguage, a metamodel is
represented by a class diagram, its constraints are written in OCL (Object Constraint
Language) (Object Management Group, 2011c), and the models are represented by
object diagrams. This is the choice followed in this work as illustrated in Figure 2.2.
The elements described in the class diagram are metaclasses and metarelationships
and the elements described in the object diagram are classes and relationships
instances of the former elements. OCL is then used to describe restrictions over the
elements of the class diagram that are checked by queering the elements of the
object diagram in order to guarantee that the model represented in the diagram

complies with the metamodel represented in the class diagram.

Role |-role - organization 1‘| Organization
RoleOfOrganization p»

role arganization
RoleOfOrganization

Seller : Role WehStore : Organization

Figure 2.2 Example of metamodel and model representations adopted in this work

20

A modeling language specification may distinguish between abstract syntax
and notation (also called concrete syntax). The abstract syntax defines the
language primitives used to construct models as the vocabulary described by the
metamodel, whereas the concrete syntax defines the graphical representation of
these primitives as icons, labels, or figures. In this work we propose both a concrete
and an abstract syntax to the normative modeling language, and also a set of rules

that guides the translation from one to another.

2.3 SECURE UML

SecureUML (Basin et al., 2006) provides a language for modeling Roles,
Permissions, Actions, Resources, and Authorization Constraints, along with the
relationships between permissions and roles, actions and permissions, resources
and actions, and constraints and permissions. SecureUML leaves open what the
protected resources are and which actions they offer to clients.

ComponentUML (Basin et al., 2006) is a simple language for modeling
component-based systems that provides a subset of UML class models: entities can
be related by associations and may have attributes and methods. In Basin et al.
(2006), the elements of the ComponentUML class models are used as resources in
SecureUML. Therefore, Entity, Attribute, Method, Association and AssociationEnd
are the possible protected resources. The actions that can be used to restrict the
access to these resources can be either Atomic or Composite. The atomic actions
are intended to map directly onto actual operations of the modeled system (delete,
update, read, create and execute). The composite actions are used to hierarchically
group atomic ones. In Table 2.1 we describe the actions used to restrict the access to

the resources, where underlined actions are composite actions.

Resource Actions
Entity create, read, update, delete, full access
Attribute read, update, full access
Method Execute
AssociationEnd read, update, full access

Table 2.1 Resources and their actions

21

The metamodel of SecureUML+ComponentUML is shown in Figure 2.2. By
using such SecureUML+ComponentUML metamodel (from now on referred as
SecureUML metamodel) it is possible, for instance, to specify the permissions a user
playing a given role must have to execute a method (or to update an attribute) of a
resource. In order to do so, it is necessary to instantiate the metaclasses User, Role,
Permission, Method (or Attribute) and AtomicExecute (or AtomicUpdate) from the

SecureUML metamodel.

22

b

fuwg ; afienfue)

U0EII0S5E fiumg : Apog
uammqmﬁwu%m WSO UTEZUOLTY
4
| pusuope|0ssy | [poian] 10
kaiesugos!
. JuawUAISsYUIE)Sho?)
pUJUD[eIIOSSE Jueguoa JUBLIURISS YIRS
PUIUDIRII0SSYAIME A ! B|0ysey
Agua. - Aue #
l b b .l
Jafiaju) : awLienul _ : Leajoog ; nejap . Uea|oog : nejap
Anug TW_ a1nnsay ke 8N03a 558038 ; UOISSIULEASEY
_ . Muawubissyaanosay UDRY UG SSUDn Ty U0ISS|WIag | 1UBWUBIS SuDIsS LB g T ajoy
uoe 7 paudissys| — $5320yanD
. Ldljowale M l e
angLne gns g
angupyAIua AyaesaiHuo)
Aua

uoyaysoiga

unjjayaysodwoy

LT L

A\
_ 55390 NJAUFUONEN0SSY | | [peayni3 |

Fi AN
| ssaowinsanauy| | [eepdnfiua] [peayoiwow]| [aepdnanion]
55300Vl 44T

UoRIaLoly

Ty

_ ms“_ﬁm_u_s_ﬁ_ _ smeou_sﬂz_

|_aeigauay |

fuaeiaIHa 0

Figure 2.2 SecureUML metamodel

CHAPTER 3: NORMML: A NORMATIVE MODELING LANGUAGE

This chapter presents the normative modeling language called NormML, which
is the core of this work. The main goal of NormML is to support the modeling of the
norms of a MAS and ensure that there are no conflicts between the norms described.
The current version of NormML that is being presented in this work is an extension of
its preliminary versions (Figueiredo et al. 2011, Figueiredo and Silva, 2010a and
Silva et al., 2010).

NormML is a UML-based modeling language for the specification of norms.
The use of UML as metalanguage allows for an easy integration of NormML with
UML-based MAS modeling languages such as AUML (Odell et al., 2000), AML
(Danc, 2008) and MAS-ML (Silva et al., 2008). Moreover, we can use metamodel-
based validation techniques in the scope of norms specified in NormML.

Our modeling language was designed with the perception that norm
specification in MAS design and security policy specification in RBAC (Role Based
Access Control) (Ferraiolo and Kuhn, 1992) design are closely coupled issues. RBAC
security policies specify the permissions that a user has under a given role, while
trying to access system resources. In MAS we specify the norms that regulate the
behavior (or actions) of a role, an agent or an agent playing a given role, for instance.
Although we consider security policies and norms coupled issues, norms can be
violated since they only define how agents should behave.

This chapter is organized as follows. In Section 3.1 we identify the main
elements that compose the norms and its characteristics in order to include these
elements in the normative modeling language. In Section 3.2 we present the NormML
metamodel and how it represents the main elements of the norms. Section 3.3
describes the well-formedness rules of the NormML metamodel and Section 3.4
details the mechanism used to check for conflicts between the modeled norms.

Finally, in Section 3.5 a concrete syntax for NormML is proposed.

24

3.1 MAIN ELEMENTS OF A NORM

In this section we discuss the key static aspects of a norm, i.e., the main
elements that compose a norm: deontic concept, involved entities, actions, activation
constraints, sanctions and context. Such elements were found out after investigating
fourteen specification and implementation languages used to describe and
implement norms (Aldewereld et al., 2006, Cholvy, 1999, Cranefield, 2007, Fornara
and Colombetti, 2008, Garcia-Camino et al., 2005, Garcia-Camino et al., 2006,
Governatori and Rotolo, 2004, Lomuscio and Sergot, 2004, Lopes-Cardoso and
Oliveira, 2010, Lépez y LoOpez et al.,, 2002, Lopez y Lépez, 2003, Silva, 2008,
Vasconcelos et al., 2007 and Vigano and Colombetti, 2008).

Our objective while investigating those implementation and specification works
was not to do a critical analysis of each element mentioned in each work, but it was
to try to consider all elements mentioned in them in order to do a deep investigation
of the norms composition to develop a normative modeling language that could
contemplate all such concepts.

In order to exemplify the elements presented below, consider some norms that
govern a simplified version of a web store. The web store is being modeled as an
organization that inhabits the market place environment and defines three roles to be
played by the agents: manager, seller or buyer. All norms are in the context of the

organization web store that inhabits the environment market place.

= N1: Sellers are permitted to update the price of the goods before receive the

open sales alert from the manager.

= N2: Sellers are obliged to delete the good’s advertisement if the stock of the
good is empty.

= N3: Buyers are obliged to pay for the good that they have bought.

* N4 (Punishment for the violation of N3): Buyers are prohibited to buy

goods.

25

The elements that compose a norm are based on the premise that norms

restrict the behavior of system entities during a period of time and define the

sanctions applied when they are violated or fulfilled.

Deontic Concept: Deontic logic refers to the logic of requests, commands,
rules, laws, moral principles and judgments (Meyer and Wieringa, 1993). In
MAS, such concepts have been used to describe behavior restrictions for the
agents in the form of obligations (what the agent must execute), permissions
(what the agent can execute) and prohibitions (what the agent cannot
execute). Thus, one of the main elements of a norm is the identification of the
type of restriction being defined, i.e., the identification of the deontic concept
associated with the norm.

E.g.: The deontic concept of the norm N1 is “permission”.

Involved Entities: Since norms are always defined to restrict the behavior of
entities, the identification of such entities whose behavior is being restricted is
essential. A norm may regulate the behavior of individuals (e.g., a given agent,
or an agent while playing a given role) or the behavior of a group of individuals
(e.g., all agents playing a given role, groups of agents, groups of agents
playing roles or all agents in the system).

E.g.. The entities involved in norm nl are all the agents playing the role

“Seller”,

Actions: Since a norm defines restriction over the execution of entities, it is
important to clearly represent the actions being regulated. Such actions can be
communicative ones, typically represented by the sending and receiving of a
message, or non-communicative actions (such as to access and modify a
resource, to enter in an organization, to move to another environment, etc.).

E.g.: The action of N1 is a non-communicative action that represents the

updating of the price of the good.

Activation Constraints: Norms have a period during while they are active,

i.e., during while their restrictions must be fulfilled. Norms can be activated by

26

one constraint or a set of constraints that can be: the execution of actions, the

specification of time intervals (before, after, between), the achievement of

systems states or temporal aspects (such as dates), and also the fulfillment /
violation of another norm.

E.g.: N1 is activated before the seller receives the open for sales alert from the

manager.

Figure 3.1 illustrates the life cycle of a norm. First, the norm is created in the
system. Eventually, the set of activation constraints of the norm becomes true (i.e.
the actions restricting the norm are executed, or the time intervals and states
restricting the norm are achieved, or another norm is violated or fulfilled) and the
norm is activated and must be fulfilled by the involved entities of the norm. If the
involved entities execute the action or achieve the states regulated by the norm while
the norm is activated, then the norm is fulfilled. Else, the norm is violated, i.e. the set
of activation constraints of the norm becomes false and the involved entities of the

norm did not execute the action or achieve the states regulated by the norm.

= . [the entities of the norm
[the set of activation execute the action or achieve the

constraints becomes true] | ‘ |statesregulated by the norm]
Created >LAct1vated J >
10
'\\1‘6’ .
9

[the set of activation
constraints becomes false]

(

LDeactivated

Fulfilled

A 4

[the entities of the norm did not
execute the action or aclieve the
states regulated by the norm]

A

Violated

Figure 3.1 The life cycle of a norm

= Sanctions: When a norm is violated the entity that has violated this norm may
suffer a punishment. The punishments are used by the system to regulate the

behavior of the agents since they intend to discourage the agents to violate

27

the norms. In the same way, when a norm is fulfilled the entity who has
followed the norm may receive a reward. The rewards are so used to motivate
the agents to fulfill the norms. Such rewards and punishments are called
sanctions and should be described together with the norm specification. A
sanction is both part of a norm and is a norm itself.

E.g.: Norm N4 is a sanction that states a punishment if the norm N3 is

violated.

= Context: Norms are usually defined in a given context that determines the
area of their application. A norm can, for instance, be described in the context
of a given environment and should be fulfilled only by the agents executing in
the environment. A norm can also be defined in the context of an organization
and must be fulfilled only by the agents playing roles in the organization.
E.g.: All the norms presented are defined in the context of the organization
WebStore.

NormML gives support to the modeling of all elements presented in this

section as shown in the next section.

3.2 THE NORMML METAMODEL

As stated before, norms can be viewed as security policies. While in
SecureUML it is possible to define the permissions a user has, i.e., the constraints
that a user, in a given role, must fulfill to perform actions over the system resources,
in NormML we extend the SecureUML language to be possible to define the norms
an entity must obey, i.e., to be possible to describe the set of actions that the agents,
roles, agents playing roles or groups of agents in a given context (organization or
environment) are obliged, permitted or prohibited to execute conditioned by the
execution of other actions and the achievement of dates and states. The language
also makes possible the definition of sanctions, i.e., rewards and punishments, to be

applied in case of fulfillment or violation of the norms.

28

The metamodel of the current version of NormML extends the SecureUML
metamodel by including the following new elements: (i) Norm (to model norms); (ii)
Agent (to represent agents whose behavior is being restricted by the norm); (iii)
Organization and Environment (to model contexts and groups of agents); (V)
NormConstraint, Before, After, Between, If, Date, Operand, and Value (to describe
activation constraints); (vi) AgentAction, Message, Protocol, Belief, Goal and Plan (to
represent new system’s resources whose access are controlled by the norms); (vii)
AtomicSend, AtomicReceive, AtomicAchieve, AtomicEnter, AtomicLeave,
AtomicCancel, AtomicCommit and a set of new composite actions (to model norms
that restrict the execution of actions that access the new resources); and (viii)
Sanction, Punishment and Reward (to model rewards and punishments).

Note that the NormML metamodel is a non-conservative extension of the
SecureUML metamodel since (i) some metaclasses where redefined and
consequently some relationships where modified, (i) some attributes of metaclasses
where eliminated because they were not being used and (iii) some invariants were
discarded since they were not applied to the metaclasses of the new metamodel. For
instance, the User metaclass and all the attributes of the metaclasses of SecureUML
were removed, and the Permission and the AutorizationConstraint metaclasses were
replaced by the Norm and NormConstraint metaclasses. Because of that, some
relationships were also changed, for example, the ConstraintAssigment relationship
between the Permission and the AutorizationConstraint metaclasses defined in
SecureUML was replaced by the NormConstraintAssignment relationship between
the Norm and NormConstraint metaclasses in NormML. Appendix A points out the
main differences between the metamodels.

A norm corresponds to an instance of the NormML metamodel, i.e., it is
defined by instantiating several metaclasses and their relationships. Figure 3.2
presents an overview of the NormML metamodel and its main metaclasses. In the
next sections, we present the complete NormML metamodel by focusing on the

definition of the main elements that compose a norm.

29

921n0say

J0ikeyagualvisal -
gecoo_s:mecesﬁ — WaBUBUGISSYION > o ey
JUBLIUOIMUZIINSE * 3|0y fulte|djuafie ; ﬁ.ﬂ%.
PRCSIMION aloyfune) Juahy
TEE JUALLOMUTIURLUUGIS SYUlON ¥
JUBLIUOIAUIPBILOUIULON
QVauissy) Wion p
WIoNSEH{UaE -
8UODUIULMIOU -| « N _._,« ULapsey - a0l -
fgnaulensuogs) -+ UlioNSEHJUBUNOINE | % Wafivigpateldfuaganl NG |*
ETTITETERTIEE] ULONJUBLIBISSUONIY Py LIONSEHBI01 - J0IAELRgRI0 1S3l \
Launosal- uoge- | MO [Tocame- paubissys -+ v - opguBLBsSON) Lo
i _ Hx.«wEoO:_ESc p SeY - RIQanghgnae|Jiuiagalol - m_oﬁazw}mum}m_mm_oh .
paufIssys! -7 . WIoNSEHuUoReZIUERIO -
UHONIQUOTOUES P s uolezILeBIOIUFWURISSYULION
Wiosaddyuonues uogezufIOlMsal |
Uojpuegsey - uoleRIuefIoNaUOUUION 8|0yAulie|dfi0
HeldflounSuaLIUAISSYULON P
HOIRLES |~ paimisss - uoneziuehiy —
auoseuoneziueio -1 0f T 1“0 uogeziuefiogns - aoyfulelB100nS
« 10

uoRezuefInuNS - yoneziueigsadns -

Vonsoduoguonezivedio

Figure 3.2 The NormML main metaclasses of the NormML metamodel

30

3.2.1 Deontic concept

A norm can be either an obligation (represented by the metaclass
NormObligation), a permission (represented by the metaclass NormPermission) or a
prohibition (represented by the metaclass NormProhibition), as illustrated in Figure
3.3. They correspond to the deontic operators that define the deontic concept of the
norm. Thus, to describe a prohibition to an entity, for instance, the NormProhibition

metaclass must be instantiated.

Norm

NormObligation NormProhibition NormPermission

Figure 3.3 The NormML metaclasses used to define the deontic concepts of a norm

3.2.2 Involved entities

A norm can be described to regulate the behavior of: (i) agents; (ii) all agents
that play a given role; (iii) a specific agent when it is playing a given role; or even (iv)
a group of agents that are part of an organizationt or an environment. Figure 3.4
depicts the part of the NormML metamodel to be used to define the entities whose

behavior is being regulated. Such part should be used as follows:

= To regulate the behavior of an agent it is necessary to instantiate the Agent

metaclass;

» To regulate the behavior of all agents that play a given role it is necessary to
instantiate the respective Role metaclass;

11n our work, we do not make any distinction among the definition of group, team and organization.

31

* To regulate the behavior of a specific agent when it is playing a given role it is

necessary to instantiate the Agent and the Role metaclasses;

= To regulate the behavior of all agents that play roles in an organization it is

necessary to instantiate the Organization metaclass;

= To regulate the behavior of all agents that play roles in an sub-organization
while such sub-organization is playing a role in its super-organization it is
necessary to instantiate the Organization metaclass of the respective sub-

organization and the Role metaclass; and
= To regulate the behavior of all agents that inhabit an environment it is

necessary to instantiate the Environment metaclass.

Organizationoompositionb
- superOrganiz ti8n1 - suhQlrganization

<« S5ubOrgPlayingRole - subOrganizationo. 1

Organization

*

< NormAssignmentSubOrgPlaR

*

OrgPlayingRole| restrictOrgnization

NormAssignmentOrganization
- rolePlayedBySubOrg
*

* - organizationHasMNorm

- superRole 0.1
A

. Role * | NormAssignmentRole = Norm
RoleHiergrehy restrictRoleBehavior - roleHasNorm
- subRaole * - roleBeingPlayedByAgent i - environmentHasNorm
- role - hasMNaorm

- apgentHasMNorm

AgentPlayingRole

0.1
- agent - agentPlayingRole
Agent |* <« NormAssignmentagent Emvironment
- restrictAgentBehavior

Figure 3.4 The NormML metaclasses used to define the involved entities of a norm

32

Thus, to model a norm that, for instance, states a prohibition to all agents that
play a given role, the NormProhibition metaclass, the Role metaclass and the

NormAssignmentRole relationship must be instantiated.

3.2.3 Actions

NormML inherits four resource kinds from SecureUML: Attribute, Method,
Entity and AssociationEnd. It extends the set of resources with: Agent, Role,
Organization, Environment, AgentAction, Message, Protocol, Belief, Goal and Plan.
Figure 3.6 shows the NormML resources and its relations.

As in SecureUML, each resource kind has a set of actions that can be used to
control the access to the resource as illustrated in Figure 3.5. In Table 3.1 we
describe which actions are used to restrict the access to each resource, where

underlined actions are composite actions.

OrganizationUpdate || OrganizationFullAccess

PlanFullAccess EmvironmentUpdate

PlanExecute / EnvironmentFullAccess
AtomicEnter
= AssociationEndFullAccess MessageFullAccess
AtomicLeave
AtomicExecute AttributeFullAccess ProtocolFullAccess
AtomicCommit
AtomicRead EntiyFulccess ProtocolReceive
AtomicCancel i
ProtocolSend

AtomicDelete 5
/ AtomicReceive R \A
\D

AtomicUpdate RoleFullAccess
i EntityRead | [CompositeAction 4””:'

AtomicAction K]—— AtomicSend

. 7 RoleUpdate
AtomicCreate - CompERIndT
AgentUpdate
AtomicAchieve ctionHierarchy goree
Action SRS ciegaih AgentFullAccess
1 - action
ko nmentNo-rriccess GoalFullaccess || BeliefFullaccess
g AResourceAssimment
Norm ; ' | Resource

- resource

- isAssigned

Figure 3.5 The NormML metaclasses used to define the action of a norm

33

0j014Agnaniadayahiesss)

20j044fuInaal - panaIayaliessal -

5 : P ETTTE] | PousNAap
1090)01d | panjoigfuipuas - Juagabessou -,| afessap ikl JETTTTRRN TR M e paE| PoweN
Jo30joid -, Q000IdgagaRessay o - [
uopsodwouoGIUaGY nu 3
" T T S
uanuayaleupiogns { uonuaiyaysodwod
T | e uoudh - m_e.m_e «« pu3oosse-| « PUII0SSE- uorjeraosse -
uoguafyiadns - g h 7 }
f a0y oS3y] uoljRI08S
uonayuafy — 5 ~ PUUORr0SSY o O03spuTI0sSE R
HOIUERNS - = . o Jeofi - Gengp” _
| uone-*
ol% Ue|diQuonay |eofi-| [e09
i * |eon= 3l0MI0I81138
Juafivioled Jalag
e D
Ui T ey < e - a0 <] Joeq | | vonezuefiip | | wewuosm3
WafOUEld uale s} e [«
Jabyouoly

Figure 3.6 The NormML metaclasses used to define the resource of a norm

Resource Actions
Entity create, read, update, delete, full access
Attribute read, update, achieve, full access
Method execute

AssociationEnd

read, update, full access

Agent

create, delete, update, full access

Role

create, delete, commit, cancel, update, full access

Organization

create, delete, enter, leave, update, full access

Environment

create, delete, enter, leave, update, full access

AgentAction execute
Message receive, send, full access
Protocol create, delete, receive, send, full access
Belief create, delete, update, full access
Goal achieve, commit, cancel, full access
Plan create, delete, update, execute, full access

34

Table 3.1 Resources and their actions

The composite actions are composed of other atomic or composite actions,
according to the relations between the resources. In Appendix B a mapping between
the composite actions and its subordinate atomic actions is described.

By instantiating the Norm, Action and Resource metaclasses and the
ActionAssignmentNorm and ResourceAssignment relationships, it is possible to
model norms that define different ways of restricting the access to different
resources. For instance, in the case of restrictions applied to the resource that
defines the actions of agents (AgentAction metaclass), the behavior that must be
used to restrict the access to such resource is the execution of the action
(AtomicExecute). Note that AgentAction is the resource and AtomicExecute is the
action being used to control or restrict the access to the resource. In other to provide
another example, consider the need for restricting the access to a given messages
(Message metaclass). In such case, three different access control can be defined:
control the access to (i) the sending of the message (AtomicSend), (ii) the receiving
of the message (AtomicReceive) or (ii) the full access (send+receive) of the

message (MessageFullAccess).

35

3.2.4 Activation constraints

NormML allows for the specification of the time period that a norm is active
based on the execution of actions and based on the definition of dates and
predicates (i.e., values associated with attributes, beliefs and goals), as shown in
Figure 3.7. The activation period of a norm corresponds to the period when the agent
must fulfill the norm.

The activation constraints are represented by the metaclass NormConstraint. If
a norm is conditioned by a Before clause, it means that the norm is active before the
execution of the action and/or the achievement of the date described in the Before
clause. If a norm is conditioned by an After clause, it means that the norm is active
only after the execution of the action and/or the achievement of the date described in
the After clause. In the case of a Between clause, the norm is only active during the

period delimited by two actions or dates.

Norm — Action
ISASSIONE! o pciondssignmentNom 1 - aceess
P « sCanstainedy o ?Lne b
Operator pfordAction ;
NormConstraptAssignment -aﬁerBetweenAcpon
lessThan - heforeBetweenAction
greaterThan + ; ; dftarAction
equalTo - conshaint +- heforeConshiaint ~ Beforection P>
lessOrEqualTo NormConstraint k}——{ Before |« peforeConstraint
greaterOrEqualTo BeforeDate
1\ operator *. afterConstraint Afterhction P
After [, - afterConstraint
: + AfterDate .
Operand TRBELGansirant + - heforeBetweenConshiaint | BetweenBeforection P
Between |+ aferBetweenConstraint Betweenifierdction P
» aﬂe@a{gefencgonﬁrainto it
+\ heforeBetweenConstrain
BehweenBeforeCanstraint > 0.1+ beforeBetweenDate

0.1}
- beforeBetweenDalé terpeteenDate

pnAfterDate Date
- afterBetweenDate 0.1

CondiionalDate - conditionalDate 0.1

- secondOperand
0.1| Operand

Figure 3.7 The NormML metaclasses used to define the activation constraints of a norm

The If constraint has an operator attribute that defines the range of values that

will activate the norm. The operator of the If constraint together with the date or

36

operands associated with the constraint compose the period when the norm is active.
Operands can be an Attribute, a Belief, a Goal or a Value (see Figure 3.8). The
ConditionalOperand relationship must be read from the firstOperand to the
secondOperand. Note that the operand Value can only be used as a

secondOperand.

Operand

Attribute Belief Goal Value

value : Object

Figure 3.8 The NormML metaclasses used to define the operands of an If constraint of a norm

In the case of a norm conditioned by an If clause, the norm is activated when:
(i) the date described in the If clause is achieved; or (ii) the relation between the
operands described in the If clause becomes true, i.e. the attribute, belief or goal
described in the firstOperand compared with the attribute, belief, goal or value in the
secondOperand respects the operator described in the If clause.

When an If constraint is associated with a date the content of the attribute
operator must be “equalTo”. The same is valid when the firstOperand is a Goal.
When an If constraint is associated with an Attribute or a Belief as its firstOperand,
any value of the Operator enumeration class can be assumed by the operator
attribute of the If constraint.

As a result, to model a norm that, for instance, states a prohibition that is
activated when an attribute achieves a particular value, the NormProhibition, If,
Attribute and Value metaclasses, and the ConditionalOperand and the

NormConstraintAssignment relationships must be instantiated.

37

3.2.5 Sanctions

NormML supports the description of sanctions (Sanction metaclass) for the
norms, as shown in Figure 3.9. A sanction may be a reward applied when the norm is
fulfilled (by instantiating the metaclass Reward) or a punishment applied when the
norm is violated (by instantiating the metaclass Punishment). A sanction activates
other norms (represented by the SanctionAppliesNorm relationship) to restrict the
behavior of an entity that can be the one that has fulfilled/violated the norm or

another entity that is the one responsible to apply the reward or punishment.

Punishment Reward

N o

- isAssigned Sanction

*

liesNorm *. hasSanction
SanctiogpOMlorm

appliedNorm

Norm |1 *
- isAssigned

Figure 3.9 The NormML metaclasses used to define the sanctions of a norm

For instance, in case an agent violates an obligation, another norm can be
activated to prohibit the agent from executing a particular action. In order to model
that, the Punishment, NormObligation and NormProhibition metaclasses must be
instantiated. A SanctionOfNorm relationship must exists between the NormObligation
and the Punishment instances and a SancionAppliesNorm relationship must be

represented between the Punishment and the NormProhibition instances.

3.2.6 Context

NormML makes possible the definition of norms in two different contexts, as
illustrated in Figure 3.10: Organization and Environment. Organizations (and sub-

organizations) define roles played by agents or sub-organizations, and both

38

organizations and agents inhabit environments. Thus, to describe a prohibition in the
context of an organization (or an environment), the NormProhibition metaclass, the
Organization (or Environment) metaclass and the NormInContextOrganization (or

NormInContextEnvironment) relationship must be instantiated.

*- normlnContext

. Norm 2
4 5ubOrgPlayingRole NorminContextEnvironment P>
* | - norminContext
NorminConteldOrganization
*_ rolePlayedBySubOrg 2
Role
> I-role - organizationalContext i
| OrganizationinhabitEnvironment > |- environmentalContext
2 izati : 1
organizatiod] organization - environmentel . Environment
RoleOfOrganization P *- organization
1.*1 organization
A - envigonment
AgentOf@rganization
. * |- agent
< AgentPlayingRole 0.1 Agent |agent
- agent * AgentinhabitEnvironment P>

Figure 3.10 The NormML metaclasses used to define the context of a norm

3.2.7 Modeling norms with NormML

In order to exemplify the use of NormML to model the norms of a MAS,
consider the norms that govern the simplified version of a web store presented in
Section 3.1.

N1 (Figure 3.11) states a permission (deontic concept) to the sellers (involved
entities) of the organization WebStore (context) to update (action) the price of the
goods (resource of the action) before they receive from the manager the message of
opens for sale (activation constraint).

Norm N2 (Figure 3.12) applies an obligation (deontic concept) to the sellers of
the organization WebStore (as norm N1) to delete the good’s advertisement (action)

if the stock of the good is empty (activation constraint).

RoleOfOrganization

39

WebStore | Organization organization

rale
Seller: Role

restrictRoleBehavior
MNormAssignmentRole

isConstrainedBy| 11 - NormPermission Good : Entity
norminContext
isAssigned entity
ActionAssighmentNorm EntityAftribute
access attribute

NormConst

constraint

roleHasNorm NorminContextOrganization

updatePrice : AtomicUpdate

organization

organizgtionalContext organization
OrganizationinhapitEnvironment
environment

MarketPlace : Environment

action resource

aintAssighment

price : Attribute

RessourceAssignment

RoleOfOrganization

heforeQOpenSalesAlert : Before

beforeConstraint

BeforeAction

openSalesAlert: Message Iresource

beforeAction

action | yaceiveOpenSalesalert : AtomicReceive

messageSent

MessageSentByProtocol

sedingProtocol

openSales : Protocal protocol ProtocolOfRole role Manager : Role rale

] A
1 ResourceAssighment

orga

ActionOfiRoleBeingPlayed

Figure 3.11 Norm N1

action | geleteAdvertisement : Agentéction

role

Seller: Role

role

restrictRoleBehavior

RoleOfOrganization

MNorminContextOrganization

roleHasNaorm

NormAssighmentRole

executeDeleteAdvertisement : AtomicExecute

access
ActionAsSignmentNorm
IsAssigned

narminContext| 12 - NormOkligation

isConstrainedBy

izationalContext
conteﬁ - NormConstrgintAssignment
L] YWehStore : Organization constraint
organization ifStockisEmpty : If |conditionalConstraint Good : Entity
OrganizationinhapitEnvironment operator = equalTo entity
environment
MarketPlace : Environment EntitvAttribute
Conditionag'Qperand attribute
EmptyStock : Value - -
uantity : Attribute
value=10 secondOperand hvd firstOperand

Figure 3.12 Norm N2

40

NorminContextOrganization organizationalContex \
MarketPlace : Environment [EMTONMENt organization [yegtore Organization
OrganizationinhabitEnvironment organizationalContext NorminContextOrganization
organization

ST RaleOfOnyanization

resource ction
i ResoureeRssignment role
action e

ActionOfRaleBeingPlayed ;
executePayGaod: AomicExecute Buper: Role

i0r restrictRoleBehay

access e
ActionAssignmsatorm role armies)
Ak InContext
IsAssigned tolehasNom gz g o o
N3 : NormObligation SalcEnOmoen Sanction : Punishment | SanctionApplishorm N4 : NormProhibition
nomminContext isAssigned hasSanction ishssigned applieshorm
isConstrainedBy isAssigned

NormConstraintAssignment

ActionOfRaleBeingPlayed
constraint
aferBuvGood - Afer afterCanstraint afterAction eveculeBUvGood - AlomicEvecute ActionAssignmentNarm
AfterAction access

action

ResourceAssignment

resource

action

huyGood : AgentAction

Figure 3.13 Norms N3 and N4

N3 also states an obligation (deontic concept) to the buyers of the organization
WebStore (involved entity) to pay for the good (action) after the given buyer buy it
(activation constraint). Norm N3 applies a punishment (sanction) that is another norm
too (norm N4). If a buyer violates N3, N4 states to the given buyer (involved entity) a
prohibition (deontic concept) to buy goods (action). Figure 3.13 shows the model of
norms N3 and N4.

3.3 THE WELL-FORMEDNESS RULES OF NORMML METAMODEL

After modeling the norms of a MAS, they should be validated. The process of
validating a norm encompasses two steps. First, the norm, as an instance of the
NormML metamodel, is checked according to the invariants of the metamodel. Not all

the norms that can be instantiated from the metamodel are well-formed. The

41

invariants check if the norm is well-formed according to the restrictions of the
metamodel elements.

The current version of NormML has a set of operations described in OCL to
check the invariants of the norms models. Below we describe some examples of well-
formedness rules of the NormML metamodel. Those were chosen since they
represent rules that are related to the specification of the norms themselves and

discuss some of the representations of the main elements of a norm.

= WFR1: A norm must restrict the behavior of an Agent, a Role, an Agent
playing a Role, an Organization, a Sub-organization playing a Role or an

Environment.

context Set(Norm)

inv InvolvedEntitiesNotNull:

self-> forAll(n:Norm|if(if((n.restrictAgentBehavior)->isEmpty()) then(((n.restrictRoleBehavior)-
>notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or ((n.restrictOrganization)-> notEmpty()) or
((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)-> notEmpty())) else
(if((n.restrictRoleBehavior)->isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or
((n.agentPlayingRole)->notEmpty()) or ((n.restrictOrganization)->notEmpty()) or
((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)->notEmpty()))
else(if((n.agentPlayingRole)->isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or
((n.restrictRoleBehavior)->notEmpty()) or ((n.restrictOrganization)->notEmpty()) or
((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)->notEmpty())) else
(if((n.restrictOrganization)-> isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or
((n.restrictRoleBehavior)->notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or
((n.subOrgPlayingRole)->notEmpty()) or ((n.restrictEnvironment)-> notEmpty())) else
(if((n.subOrgPlayingRole)-> isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or
((n.restrictRoleBehavior)->notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or
((n.restrictOrganization)->notEmpty()) or ((n.restrictEnvironment)->notEmpty()))else
(if((n.restrictEnvironment)->isEmpty()) then(((n.restrictAgentBehavior)-> notEmpty()) or
((n.restrictRoleBehavior)->notEmpty()) or ((n.agentPlayingRole)->notEmpty()) or
((n.restrictOrganization)->notEmpty()) or ((n.subOrgPlayingRole)->notEmpty())))))))))
then(true)else(false)endif)endif)endif)endif)endif)endif)endif

This rule concentrates on the relationships that define the involved entities of a

norm. A norm must restrict the behavior of at least one entity.

42

= WFR2: An AtomicExecute action must be related to a Method or an

AgentAction resource.

context Action

inv AtomicExecuteCorrectAccess:

if((self.oclisTypeOf(AtomicExecute)) and

((self.resource.ocllsTypeOf(Method)) or (self.resource.oclisTypeOf(AgentAction))))

then(true)else(false)endif

As explained in Section 3.2.3, each action can only be used to access a
specific group of resources. The WFR2 matches the AtomicExecute action to the
Method or the AgentAction resources.

» WFRS3: The action to be executed by an entity that is defined in the before
clause of a Between cannot also be defined in the after clause of such

Between to be executed over the same resource.

context Between

inv BetweenDefinesPeriodOfTime:

if((self.before Action=self.afterAction) and
(self.beforeAction.resource=self.afterAction.resource))

then(false)else(true)endif

This rule address the relationships between the Between and the Action
metaclasses, used to define one kind of activation constraint of a norm. If the actions
in the before of a Between and in the after of a Between are the same and are
related to the same resource, this situation does not constitute a time period, but a

moment in the time. So it is impossible to configure a period to the norm be active.

» WFR4: A Reward to an entity cannot apply a NormProhibition or a

NormObligation to the same entity.

context Sanction
inv CorrectReward:
if ((self.ocllsTypeOf(Reward) and

43

((self.appliedNorm.oclisTypeOf(NormProhibition) or
self.appliedNorm.oclIsTypeOf(NormObligation)) and
(((self.appliedNorm.restrictAgentBehavior)-> intersection(self.isAssigned.restrictAgentBehavior))-
>NotEmpty()) and ((self.appliedNorm.restrictRoleBehavior)->
intersection(self.isAssigned.restrictRoleBehavior))->NotEmpty()) and
((self.appliedNorm.agentPlayingRole)-> intersection(self.isAssigned.agentPlayingRole))->NotEmpty())
and ((self.appliedNorm.restrictOrganization)-> intersection(self.isAssigned.restrictOrganization))-
>NotEmpty()) and ((self.appliedNorm.subOrgPlayingRole)->
intersection(self.isAssigned.suborgPlayingRole))->NotEmpty()) and
((self.appliedNorm.restrictEnvironment)-> intersection(self.isAssigned.restrictEnvironment))-
>NotEmpty())) then(false)else(true)endif

This rule guarantees that if the sanction of a norm is a Reward, it cannot
define a prohibition or an obligation to the same entity because this situation does not

represent an incentive that is the main purpose of a reward.

= WFR5: A norm must be defined in the context of an Organization or an

Environment and cannot be defined in the scope of both at the same time.

context Set(Norm)
inv ContextNotNull:
self-> forAll(n:Norm|if(if((n.organizational Context)->isEmpty())
then((n.environmentalContext)->notEmpty())

else (if((n.environmentContext)->isEmpty())

then ((n.organizationalContext)->notEmpty()))
then(true)else(false)endif)endif)endif

This rule concentrates on the relationships that define the context of a norm.
Every norm must belong to one context (organization or environment).
All the well-formedness rules of the NormML metamodel are described in

Appendix C.

44

3.4 CHECKING FOR CONFLICTS

After verifying the well-formedness of the norms, the second step to validate
the norms is to check if there are conflicts among them. Our language provides a set
of operations described in OCL to check for conflicts between the norms in NormML.
The norms are checked in pairs by considering the situations presented in the
following subsections, if one of the cases analyzed in each item (or subsection)
returns “true”, so the analyses continues to the next item (or subsection), see Figure
3.14 below.

[Deontic concept analysis
finds conflict possibility]

Deontic Concept
Analysis [Else] [Else]

Actions Analysis

[Action analysis finds

[Involved entities analysis _ yH:
conflict possibility]

finds conflict possibility]

Involved Entities
Analysis

Activation
Constraints Analysis

[Activation constraints

[Context analysis finds . . .
analysis contirms contlict |

conflict possibility]

Context Analysis Conflict

[Select two norms]

Figure 3.14 NormMI check for conflicts analysis

As stated before, a norm in NormML is composed of the following elements:
deontic concept, involved entities, actions, activation constraints, sanctions and
context. The operations, as the analysis, follow a top-down approach since they start
by checking (i) if the norms are defined in the same or related context, (ii) if they
apply to the same or related entities, (iii) if they state related deontic concepts, (iv) if
they restrict the same or related actions and, finally, (v) if they are active in periods
that intersect. The operation below describes our approach calling the specific

operations that analyze the main elements of two norms.

45

context Set{Norm}:: checkingForConflicts(n1:Norm,n2:Norm):Boolean
body: if(nl.relatedContexts(n2))
then(if(nl.relatedEntities(n2))
then(if(n1.deonticConceptConflicts(n2))
then(if(nl.relatedActions(n2))
then(if(nl.activationConstraintsintersects(n2))
then(true)
else(false)endif)
else(false)endif)
else(false)endif)
else(false)endif)
else(false)endif

In order to exemplify the checking for conflicts in sections 3.4.1 to 3.4.6, let's

consider norms N5 and N6 of the simplified web store case.

= Nb5: Buyers are prohibited, in the context of the organization WebStore that

inhabits the environment MarketPlace, to return a good it has bought.

= NG6: Buyers are permitted, in the context of the organization WebStore that
inhabits the environment MarketPlace, to return a good it has bought between
the period of exchange (e.g. between 01/03/2011 and 31/03/2011).

3.4.1 Context analysis

While checking for conflicts between two norms, the first element to be
analyzed is the context of the norms. If the contexts of the norms are not related,
there is no need to keep looking for conflicts because the norms defined in different
contexts are not related to each other, and thus cannot conflict. For instance, a given
agent can be prohibited to execute an action in a context and permitted to execute
the same action in another context. It is important to check for conflicts: (i) if the
norms are defined in the same context; (ii) if one norm is defined in the context of an

environment, and the other in the context of an organization that inhabits such an

46

environment; and (iii) if one norm is defined in the context of an organization and the
other in the same hierarchy of organizations.

E.g. of case (i): Both N5 and N6 are defined in the context of the organization
WebStore that inhabits the environment MarketPlace. Therefore, it is important to
check if these norms are in conflict. The operation below is able to check if two norms

are in the same organizational context.

context Set{Norm}::sameOrganizationalContext(n1:Norm,n2:Norm):Boolean

body: nl.organizationalcontext = n2.organizationalcontext

3.4.2 Involved entities analysis

The second element to be analyzed is the involved entities of the norms. If the
entities of the norms are not related, i.e., if they apply to different entities, they cannot
be in conflict. Thus, it is necessary to check for conflicts: (i) between norms applied to
the same entity; (ii) between a norm defined to a role and a norm defined to an agent
or a sub-organization that can play that role; (iii) between norms applied to different
roles played by the same agent or sub-organization; (iv) between norms applied to
roles in the same hierarchy of roles; and (v) between the norms of an organization
and norms of roles, agents and sub-organizations of this organization.

E.g. of case (i): N5 and N6 are restricting the behavior of the same role (buyer)
of the organization WebStore. Since both norms are defined in same context and
applied to the same subject, these two norms can be in conflict. The operation below

can be used to check if two norms restrict the behavior of the same roles.

context Set{Norm}::restrictSameRoleBehavior(n1:Norm,n2:Norm):Boolean

body: (nl.restrictRoleBehavior->intersection(n2.restrictRoleBehavior))->notEmpty()

47

3.4.3 Deontic concept analysis

After the verification of the involved entities, the next element to be
investigated is the deontic concept of the norms. Two norms may be in conflict if: (i)
one norm states a permission and another states a prohibition; (i) one norm states
an obligation and another states a prohibition; and (iii) one norm states a permission
and another one states an obligation in the period the permission is not activated.

Moreover, a special case needs to be considered when both norms state an
obligation or both norms state a prohibition to related actions, this fourth (iv) case will
be explained in more details in Section 3.4.4.

E.g. of case (i): N5 states a prohibition and N6 states a permission applied to
the same subject executing in same contexts. The operation below checks if two
norms define deontic concepts that may characterize a conflict defined in cases (i),

(i) and (iii) above.

context Set{Norm}::checkDeonticConcept(n1:Norm,n2:Norm):Boolean
body: if((n1l.ocllsTypeOf(NormProhibition))and(n2.oclisTypeOf(NormObligation)))
then(true)
else(if((nl1.oclisTypeOf(NormProhibition))and(n2.oclisTypeOf(NormPermission)))
then(true)
else(if((nl.oclisTypeOf(NormObligation))and(n2.oclisTypeOf(NormPermission)))
then (true)
else (false) endif) endif) endif

3.4.4 Action analysis

After the checking of the deontic concept, the next element to be examined is
the action of the norms. In case the deontic concepts of the norms are in one of the
situations (i), (ii) or (iii) of Section 3.4.3, it is important to check for conflicts if: (i) the
actions being regulated by the norms are of the same type on the same resource;
and (ii) if the actions being regulated by the norms are of related types (as defined in
the dialect action hierarchy) on related resources. In order to exemplify case (ii),
consider the case that one norm states an AgentUpdate or an AgentFullAccess to
one Agent and the other norm states one of the actions that can be associated with

the beliefs, goals, plans or agent actions of the same Agent, e.g. an AtomicAchieve

48

on one Goal of the Agent. Table B.1 of Appendix B describes the complete list of
related types of actions according to the dialect action hierarchy.

Moreover, a special case needs to be considered when the situation (iv) of
Section 3.4.3 occurs. In this case it is important to verify if the actions being regulated
by the norms are semantically opposite and restrict the access of the same resource
(see Appendix D to the complete list of semantically opposite actions). An example of
this case occurs when, for instance, one norm defines an AtomicEnter and the other
an AtomicLeave to the same Organizations or Environment and the deontic concepts
associated with the norms are both an obligation or both a prohibition. If one norm
states an obligation to enter a particular organization or environment and another one
states an obligation to leave the same organization or environment, these norms may
be in conflict if the period for fulfilled the norms intersects. The same is valid to
prohibitions.

E.g. of case (i): N5 and N6 regulate the execution of the same action (return
good). Both norms can be in conflict since they are applied to the same subject,
executing in same contexts and regulating the same action. The operation below

checks if two norms are regulating the same action over the same resource.

context Set{Norm}::regulateSameAction(n1:Norm,n2:Norm):Boolean
body: if((nl.access = n2.access) and (nl.access.resource = n2.access.resource))

then(true) else(false) endif

3.4.5 Activation constraints analysis

Finally, two norms may be in conflict: (i) if the periods established by actions
and dates of the invariants Before, After, Between and If intersect; (ii) in case of two If
conditions, if the values related to the same attribute or belief intersects (e.g.: x>10
and x=15); and (iii) in case of two If conditions, if the values related to the same goal
are equal.

E.g. of case (i): N5 and N6 are defined in time periods that intersects since N5

is always activated, i.e., it is not restricted to any condition, and N6 is activated in a

49

period between two dates. The operation below checks if one of the norms is not
constrained by any period of time.

context Norm::isNotConstrained():Boolean

body: self.constraint->size()=0

Consequently, N5 and N6 are in conflict because both norms are applied to
the same subject (buyer), executing in the same context (WebStore), regulating the
same action (return good) and defined in time periods that intersects.

In Appendix H we illustrate all the NormML conflict cases implemented by the

check for conflicts operations.

3.4.6 Sanctions analysis

The analyses of the norms that are used as sanctions are different from the
others norms. The top-down approach is followed in the same way, but they will be
only compared to norms that are applied as sanctions of the same norm and are of
the same type, i.e., all the rewards that a given norm applies will be checked together
two by two, and similarly, all the punishments will be verified two by two. That occurs
because the rewards will be activated when the norm is fulfilled and the punishments
will be activated when the norm is violated, so the period of activation between the
rewards and punishments will not intersect.

The operation below returns all the rewards of a norm, so they can be

analyzed.

context Norm::getRewards():Bag(Sanction)

body: self.isAssigned->collect(s:Sanction|s.ocllsTypeOf(Reward))

Note that there is no need to compare the norms applied as sanctions with the
other norms because we can only determine if a conflict between them will occur at

run time.

50

3.5 THE NORMML CONCRETE SYNTAX

The previous sections presented the abstract syntax of the normative
modeling language NormML, by showing how norm can be modeled by instantiating
the metaclasses of the NormML metamodel and how to validate these models by
verifying their well-formedness and checking for conflicts between the norms.

In this section we present a concrete syntax to NormML that was inspired on
the concrete syntax of SecureUML. The aim of the concrete syntax is to represent
the graphical models of NormML. Accordingly, it will be denoted by graphical models

the models M that the system designer sees and works with, and it will be denoted by

abstract models M the object diagrams that represent the models M as instances of

the NormML metamodel. As a result, each element of M is mapped to a set of

elements in M according to the semantics of its graphical representation. Of course,
the mapping must satisfy the following property: if M is a well-formed graphical

model, i.e., it satisfies all the invariants of the graphical model, then M is a well-
formed abstract model that satisfies all the invariants of the metamodel.

To illustrate the use of the concrete syntax of NormML to construct a graphical
model M, N1, N2, N3, N4, N5 and N6 presented in this chapter will be used. Such

graphical model is illustrated in Figure 3.15.

51

aJNJaxa : poooAngIaing <<UoIYUoIUanEe:=

N
z=juawysiunds:=
=<U0RIYIYoId==»
==UWHON==

paulssys|

PeuoJuuIol -

UoIEZIUERIQIAIU0DUIULION

A\

WIONSEHB|0) - |0IUBLUILBISSYUUON P

paubissys] -

Agpaulensuogs -

o WIONUBLIUAISSYaIN0SaY

A ULONIQUONIUES

UUONSEY - paufissysi -
L

< LIONUBLUBISSYUEASUDD

Julelsuod $5a208

101ABY3ZA|04)ISE] -

298 -

< ONJUBLILBISSYaN0SaY

aJNJaxa : POOOANTIBANG < <UONIYUORIVUBAE: > <<UDNIYIBNE: >
ajnaaxa : pooohediaing <<uogayuonIuaiiess

paufissys -

LLOZIENILE ==B10jaguaamal=»
LLOZIED/LO0 ==BUYUaBMB= =
3]N8xa : POoYUINIalIaing ==UoIyUoNIUaaE: >

P@juoJujuIIol -

$58928 -
uolvuabe | poog

wiiopseHalol - d0lAeyaga|0ygiansal

€N
=zU0NeRgO==
«=ULUON==

uapaualbe : poooied
uaauaie : poooing

WUONJUBLUUAISSYaN0Sa Y P
o 310 uBLIYBISSYULON

winjal

9N
<<U0ISSILlad=>
<=<UUON==

8|0HIUBLIUBISSYULION P ==

==8|0Y==

P@EUoQuUjuIou -

101ABY3F3|0H11]SB) - LIONSEHB|01 -

0 =01lenba : Auenb poog <<aNqUEYIEUOPUOI ==

>muwc_w:w:omw 3INJ8X3 : JUBLUBSIUBANYS]B|3N 13|35 =<UDNIYUDIIUBAE ==

uoneziuefioios|oy

FapuoQuLIou -

N
=z=zU0efgO==
==UUON==

ULoNUBLIUAISSYaIN0say P

paufilssysi -

WIONSEHB|01 -

EEZ«:@E:%»XAEQECOO

l0laeaga|oHlasal -

uaeziuefiQ;

§5820E -

uopauale JuaWasiuaApyalalap

UIEASH03 30-UBLIUAISSYULION P 131188
=<8|0Y==

iz Anuenb

leoy aoud [5589%8 101ABY3F3|0 410183l - EE

10NUBLILAISSYAUN0SaY
M“”w > BI0MIUBLIUBISSYUUON P
<<, =
- paufissys| Haogeuoyeziueiio

WHONSEHB|04 5

8893 : Uajysaleguado laBeus)y <<UoIyYaheSSaL» < <U0IYBI0N ==
ajepdn : 810" PO0Y <=UORIYBINURES=

uolezIUERIOIOBI0H P

uonezIuellQaju0 JUIULLON | 2

peEoRuonezIURRIO -

pauogelonezinenio 4

uoneziyenio

IN
==UDISSIUBg==
==LLUON==

ajuouwIou - Feuogeuonez

uoneziuenio -

[BI0HUBLIUAISSYULON

ULONUBLIUBISSYaUN0SaY P o eBio
uoyezIuelio

paubissys] - \

8Jn2a%a POOOUINGBLIBANG <<UoRIYUONIAUBHES>

SN
<<U0IgoYold==
==<UNON==

Fauoguuiou -

quoneziueflQpajuoHuuIoN

uefio 2I0)S4apr

a0 euonezIueRIo -

BJUODUILION

y

z=zUoeZIUERIQ==

UONEZIUEBIONEIU0 JUILLION P>

Agpaulensuogs -

< ULONUBLUUAIGSYUIRISUDD

{uaysajeguado} |j0a0j0ud : sajeguado

8|04 -

JuBSU0d

1afieuepy
==8|04=>

uonezuefiQi0a|oy p

JUBLIUOIAUINGE YU UONEZIUERIO

\ 4

Juswiuoiiaue

aoejdiexien
<<]UaUIUOIAUT ==

pajuod euonezIuehio -

Figure 3.15 Web store norms graphical model

52

3.5.1 Creating the graphical models

The NormML concrete syntax uses the representation of UML classes
adorned with stereotypes to model: agents, roles, environments, organizations,
entities and the norms themselves. The stereotypes used refers to the metaclasses
of the NormML metamodel used to model these elements. For instance, the role
Manager is represented by a UML class with a <<Role>> stereotype.

The agent classes can have attributes to represent its beliefs, goals, plans and
actions, and the role classes can have attributes to represent its goals, protocols and
actions to be executed by the agents. For instance, the role Seller has a
deleteAdvertisement attribute of the type <<agentAction>> which means that
deleteAdvertisement is an agent action to be executed by agents that play the role
Seller.

The entities classes may have attributes and methods in its respective
compartments, similar to the entity Good that owns a price and a quantity attributes.

Norms also have stereotypes used to define their deontic concepts. For
instance, norm N1 is represented by a UML class with a <<Norm>> and a
<<Permission>> stereotypes. If a norm is a sanction, it also has a stereotype labeling
the sanction type: reward or punishment (see norm N4 in Figure 3.15).

A norm has an attribute called “resource action” that indicates the action being
regulated and the resource accessed by such action. The action is identified by a
name and by a stereotype. The stereotype is used to restrict the kinds of actions that
can be used to manipulate the resource and the name of the action indicates the
specific kind in this set. For instance, consider N1 that regulates the updating of the
resource price of the entity Good. The stereotype <<attributeAction>> specifies that
the attribute refers to an action (read, update, achieve or full access) over an attribute
and the name of the action that is update indicates that the action being restricted is
the updating of something, in this case, the updating of the attribute price of the entity
Good, which is a resource. Note that it is important to specify the entity that has such
attribute before the dot “.” and by the relationship RessourceAssignmentNorm, for

instance in N1 the entity is Good.

53

Norms can also have “constraints” attributes that represent the activation
constraints of the norm. Such constraint can be an “action constraint”, a “conditional
constraint” or a “date constraint”.

In case of an “action constraint”, the attribute is composed of one stereotype to
indicate the kind of the action constraint being defined (before, after or between)
followed by the constraint that is a “resource action” attribute. The stereotypes that
can be used to indicate the kind of the action constraints are: <<beforeAction>>,
<<afterAction>>, <<beforeBetweenAction>> or <<afterBetweenAction>>. Norm N1 in
Figure 3.15 defines a <<beforeAction>> action constraint restricted by the receiving
of a message called openSalesAlert to be sent by the role Manager. Note that it is

“n

important to specify the role that has such message before the dot “.” and by using
the relationship ConstraintAssignmentNorm.

In case of a “conditional constraint”, the attribute is composed of a stereotype
indicating the conditional constraint type followed by the name of an attribute, belief
or goal, the name of the operator and the name of another attribute, belief or goal, or
a value. Note that it is also important to specify and relate such attribute, belief or
goal to the entity that owes it. Norm N2 in Figure 3.15 illustrates a conditional
constraint attribute stating that the attribute quantity of Good must be equal to 0.

In the case of a “date constraint”, the attribute is composed of a stereotype
indicating the date constraint type followed by the date. Norm N6 in Figure 3.15
shows two date constraint attributes 01/03/2011 and 31/03/2011 labeled by the
stereotypes <<afterBetween>> and <<beforeBetween>> respectively, indicating that
N6 is active in the interval between these two dates.

As occurs in the abstract models, agents and organizations must be related to
() the roles they play (by the relationships AgentPlayingRole and
SubOrgPlayingRole, respectively), (i) the organizations they belong (by the
relationships AgentOfOrganization and OrganizationComposition, respectively), and
(i) the environment they inhabit (by the relationships AgentinhabitEnvironment and
OrganizationinhabitEnvironment, respectively). Also, roles must be related to the
organizations they belong by the RoleOfOrganization relationship.

A complete list of the graphical model stereotypes and what they represent is

described in Appendix E.

54

3.5.2 Mapping from concrete to abstract syntax

As stated before, each element of M is mapped to a set of elements in M

according to the graphical representation semantics. The mapping of a model M to a
model M must occur in order to construct a well-formed model M that complies with

the abstract metamodel and its well-formedness rules. In Appendix F the complete

mapping between the graphical models M of the concrete syntax and the abstract

models M of the abstract syntax is traced.
In order to exemplify the transformation of the concrete syntax of a norm to its

abstract syntax, let's consider the set of transformation rules below:

Rulel. For each Environment env of M, insert in M an object env of the class

Environment.

Rule2. For each Organization org of M, insert in M an object org of the class

Organization.

Rule3. For each OrganizationinhabitEnvironment relationship of M between env
and org, insert in M an OrganizationInhabitEnvironment link between env and

org.

Ruled4. For each Entity e of M, insert in M an object e of the class Entity and,
for each Attribute a of an Entity e of M, insert in M (i) an object a of the class

Attribute and (i) an EntityAttribute link between a and e.
Rule5. For each Role r of M, insertin M an object r of the class Role.

Rule6. For each Protocol pro of a Role r of M, insert in M (i) an object W) of
the class Protocol; (ii) a ProtocolOfRole link between m and r; (iif) an object
messof the class Message and a MessageSentByProtocol link between m)

and mess for each “sent message” mess of pro; and (iv) an object mess of the

55

class Message and a MessageReceivedByProtocol link between pro and

mess for each “received message” mess of pro.

Rule7. For each RoleOfOrganization relationship of M between org and r,

insert in M a RoleOfOrganization link between org and r.

Rule8. For each Norm n of M that states a permission, insert in M an object n

of the class NormPermission.

Rule9. For each resource action attribute res of Norm n of M that is an
“attributeAction” and has the action type “update”, must be inserted in M (i)
an object act of the class AtomicUpdate; (ii) an ActionAssignmentNorm link
between act and n; and (iii) a RessourceAssignement link between act and

the object a which name is equal to res.

Rulel0. For each action constraint attribute acon of Norm n of M that is a

“beforeAction” and has a res that is a “messageAction” and has the action type
“receive”, insert in M () an object act of the class AtomicReceive; (i) an
object bef of the class Before; (iii) a BeforeAction link between act and the
object ﬁ; (iv) a NormConstraintAssignment link between n and the object

bef - and (v) a RessourceAssignement link between act and the mess object

which name is equal to acon.

Rulell. For each NorminContextOrganization relationship of M between org

and n, insertin M a NorminContextOrganization link between org and n.

Rulel2. For each NormAssignmentRole relationship of M between r and n,

insertin M a NormAssignmentRole link between randn.

Let's take norm N1 from Figure 3.15 as an example of mapping with the

purpose of constructing the abstract model M of Figure 3.11. By using rules 1 and 2,

the objects of the Environment MarketPlace and the Organization WebStore are

56

created. Rule 3 defines the OrganizationinhabitEnvironment relationship between the

WebStore and the MarketPlace and ensures that an organization will always inhabit

an environment in M .

By using rule 4 the Good instance of Entity and the price and quantity
instances of Attribute are created. Rule 4 also creates the relationship EntityAttribute
between Good and its attributes price and quantity to guarantees that the attribute

will belong to its entity in M.
Rule 5 generates the Role instances Manager and Seller, and rule 7 assign

them to the Organization WebStore trough the relationship RoleOfOrganization. With

rule 7 it is ensured that each role will belong to an organization in M.

Rule 6 guarantees that each message will belong to its protocol and each

protocol will belong to its role in M . Thus, with rule 6 the openSales Protocol is
created and related to its Message openSalesAlert (by the MessageSentByProtocol
relationship) and its owner Role (by the ProtocolOfRole relationship).

Rule 8 generates the NormPermission’s instance N1 and by rule 9 its atomic
update action updatePrice is created and related to N1 (by the
ActionAssignmentNorm relationship) and to the Attribute price (by the
ResourceAssignment relationship). Then, rule 9 guarantees that the norm will restrict
the access of an action over a resource.

By using rule 10 the beforeOpenSalesAlert instance of Before and the
receiveOpenSalesAlert instance of AtomicReceive are created. The
beforeOpenSalesAlert is related to N1 by the NormConstraintAssignment relationship
and the receiveOpenSalesAlert is related to openSalesAlert by the
ResourceAssignment relationship. Rule 10 ensures that the before constraint will be
related to an action as stated in the WFR56 (see Appendix C).

Finally, rule 11 defines the organizational context of the WebStore to N1 by
the NormInContextOrganization relationship and rule 12 assigns N1 to the Role
Seller by the NormAssignmentRole relationship. Rules 11 and 12 comply with the

WFR1 and WFRG6 respectively (see Appendix C). As a result, the well-formed model
M of N1 is created as it was illustrated before in Figure 3.11. The creation of a well-
formed model M of N1 is possible because the transformation rules follow all the

restrictions of the abstract metamodel and the well-formedness rules as stated

above. The same is valid for all the transformation rules of Appendix F.

57

Note that, the model M of N1 is a well-formed concrete model. When a given

model M is not correct according to the concrete syntax, then a not well-formed
model M will be create. E.g. Rule 3 ensures that the organization WebStore will

inhabit the environment MarketPlace in M, but that is only possible because the

OrganizationinhabitEnvironment relationship between the WebStore and the
MarketPlace is described in M.

Recall that, in our approach, the checking for conflicts between norms using
OCL depends on the mapping from graphical models to abstract models (see
Appendix F). This is because the operations will not be evaluated on the graphical
models, but rather on the corresponding abstract models.

CHAPTER 4: RELATED WORK

Although there are some works, such as the MAS modeling languages AUML,
MAS-ML and ANote (Noya and Lucena, 2005) and the MAS methodology MESSAGE
(Caire et al., 2002) that do not support the modeling of norms, there are already
many others that make possible the modeling of several elements of a norm. From
the set of two MAS modeling languages (Danc, 2008, and Wagner, 2003), seven
MAS methodologies (Cossentino, 2005, Garcia-Ojeda et al., 2008, Giorgini et al.,
2006, Juan et al., 2002, Omicini, 2001, Padgham and Winikoff, 2004, and Zambonelli
et al., 2003) and three MAS organization models (Dignum, 2004, Ferber et al., 2009,
and Hubner et al., 2002) analyzed, no one is able to model all the properties of the
main elements that compose a norm and being described in Section 3.1.

In this chapter we discuss those modeling languages, methodologies and
organization models showing how they represent the concepts related to the norms
and employ these elements when the designers are modeling the norms (Section
4.1).

In addition to the elements of the norm, another interesting characteristic to be
considered when analyzing the modeling languages, methodologies and
organizational models is the ability to detect conflicts between the norms of the
system at design phase. Thus, Section 4.2 presents an investigation about the
support to the checking for conflicts between norms in those works. We compare

such works with NormML, the modeling language being proposed in this work.

4.1 MAIN ELEMENTS OF A NORM

= Deontic concept: Most modeling languages and methodologies make
available the deontic concept of obligation in order to describe the actions that
agents must execute. Methodologies such as Secure Tropos (ST) (Giorgini et
al., 2006), SODA (Omicini, 2001), Prometheus (Padgham and Winikoff, 2004)
and the organization model proposed in MOISE+ (Hubner et al., 2002) only

offer the concepts of obligation and permission since they consider that

59

everything that is not permitted is automatically prohibited. In the ST
methodology the concept of obligation can be represented by the delegation
relationship and the concept of permission by the ownership and trust
relationships. NormML, different from the majority, includes all the three
deontic concepts (obligation, permission and prohibition) in the modeling of

norms.

Involved entities: All works analyzed propose a way to describe the entities
to which the norm applies (elements checked in Table 4.1). The majority
provides support to describe a norm for a particular role while others provide
support to also describe a norm for other entities. Some works (Cossentino,
2005, Hubner et al., 2002, Juan et al., 2002, and Zambonelli et al., 2003) do
not allow the description of norms that apply to a group of individuals. This fact
does not imply that the works analyzed do not support the modeling of such
entities, however they do not provide ways to apply norms to them. The ST
methodology also allows the designer to describe the system itself as an entity
and to define norms that can be applied to the system as a whole. By using
NormML it is possible to describe norms to individuals, groups of individuals or
all the entities of the system.

Actions: All the modeling languages, methodologies and models analyzed
provide a way to restrict non-communicative actions. But, the same is not true
about communicative actions. In (Hubner et al., 2002, Juan et al., 2002,
Omicini, 2001, and Wagner, 2003) the restriction of communicative actions is
not available. In ROADMAP (Juan et al., 2002), that is one of the proposed
extensions for Gaia, the designer can only restrict the access to objects, roles
and protocols of the system. NormML supports the modeling of both kinds of

actions, communicative and non-communicative over a large set of resources.

Activation constraints: The works analyzed present several ways to
describe the period during while a norm is active, i.e., to describe the
restrictions for their activation and deactivation (see more details in Table 4.1).
In the MASQ and OperA organizational models it is possible to define the

activation of a second norm by the violation or fulfilment of the first norm. The

60

ST methodology is the only one that does not provide any kind of activation
constraint representation since their norms are always active. According to
(Molesini et al., 2009), the SODA formalism is still being developed so we
cannot affirm the types of restrictions that such methodology will support. By

using NormML all the activation constraints of the Table 4.1 can be modeled.

Sanctions: A small number of languages and methodologies consider that
norms can be violated, and only a few of them provide a way for describing
sanctions. The AORML (Wagner, 2003) language assumes that commitments
(or obligations) between entities of the system can be violated, and, as
consequence, a sanction should be applied. But the language does not offer a
way to describe this sanction. The organizational models OperA (Dignum,
2004), MASQ (Ferber et al., 2009) and MOISE+ consider that norms can be
violated, and, excluding MOISE+, they have mechanisms to describe
punishments.

The O-MaSE (Garcia-Ojeda et al., 2008) methodology groups norms
into two kinds of policies: law policies and guidance policies. Only the
guidance policies can be violated but there is not a way to define sanctions for
such violations. The Gaia (Zambonelli et al., 2003) and PASSI (Cossentino,
2005) methodologies express norms as organization rules that cannot be
violated, and so there is no need to define a sanction mechanism. None of the
analyzed languages or methodologies allows the description of rewards in
case of the fulfillment of a norm. However, NormML supports the definition of

both punishments and rewards.

Context: All languages, methodologies and organizational models define the
norms in an organizational context. The AORML language also offers support
to express obligations between two agents (as commitments) in the
context of an interaction. Besides AORML, methodologies such as PASSI,
Prometheus, Gaia and the organizational model OperA also allow the
description of norms in such a context. Moreover, in OperA and Gaia it is
possible to describe a norm in a context that represents the transition of
scenes. Besides describing norms in an organizational context, NormML also

provides the environmental context.

61

Recall that the main elements that compose a norm were found out after
investigating fourteen implementation and specification languages used to describe
and implement norms (Aldewereld et al.,, 2006, Cholvy, 1999, Cranefield, 2007,
Fornara and Colombetti, 2008, Garcia-Camino et al., 2005, Garcia-Camino et al.,
2006, Governatori and Rotolo, 2004, Lomuscio and Sergot, 2004, Lopes-Cardoso
and Oliveira, 2010, Lopez y Lépez et al., 2002, Lopez y Lopez, 2003, Silva, 2008,
Vasconcelos et al., 2007 and Vigano and Colombetti, 2008).

Our objective while investigating those implementation and specification works
was to try to consider all mentioned elements mentioned in order to do a deep
investigation of the norms composition to develop a complete normative modeling
language. We understand that none of the works presented in this section have as
the main purpose of modeling norms as NormML does, what justifies the absence of
some elements in their proposals.

Thus, Table 4.1 just summarizes the discussion about the modeling of the
main elements of a norm by the related work studied and our proposed modeling

language: NormML.

62

)]
3 %
| (] E s + 1
= “ % ¢ o < O B < =
= 8§22 58,823 1§
CU] — [o (@]
2 < 6 &6 &8 & &g K s = &8 2
- Permission
o
0]
(&)
S Prohibition P P E . ——
O
2
§ Obligation
o
Agent
_@ Role
£ |
ul Agent playing role
©
2
S Groups of individuals | -
2
All in the system
Communicative
* Actions
c
o
° Non-communicative 5 R
< Actions
Execution of actions
%))
=
© Time intervals
»
C .
8 Achievement of
s states
-% Temporal aspects
=
&’ Fulfillment and . . R
violation of a norm
o Punishment . . .
c
©
2 Reward .
]
n
- Environment .
x " .
8 Orgar"za‘“on ° . ° .
S Interaction
© Transition of scene . .

Table 4.1 Main elements of a norm

63

4.2 CHECKING FOR CONFLICTS

In this section we investigate about the support provided by the analyzed
approaches for checking conflicts among norms is presented. First, in Section 4.2.1
we point out how the MAS modeling languages, methodologies and organizational
models deal with the norms conflicts, and then, in Section 4.2.2 other approaches are

discussed.

4.2.1 Modeling languages, methodologies and organizational models

From works exposed previously, only the AORML modeling language, the ST
methodology and the OperA organizational model consider norm conflicts. Table 4.2
compares the analysis done at the verification for conflicts of these approaches to
NormML.

The AORML language assumes that there is a normative inconsistency when
there is at the same time a permission and a prohibition, or a prohibition and an
obligation to the same action. It considers that obligations already have a permission
embedded, so there is no conflict in this sense. Although the language considers that
conflicts can occur, it does not have an automatic mechanism to detect these
conflicts.

The ST methodology defines eight properties to be used for the verification of
conflicts in its models, including two for the validation of conflicts between the
system’s obligations and permissions. The analysis is done only between norms of
the same entity when they are defined in the same context. Although norms can be
defined in different but related contexts, they do not check conflicts between them.
For instance, it is important to check for conflicts between norms defined in the
context of an interaction of roles and norms defined in the context of the organization
where these roles are being played. In this case the contexts organization and
interaction are related and conflicts between norms must be checked. Moreover,
since all the norms have no activation constraints, they do not take this characteristic

into account when checking for conflicts. The ST methodology has a tool to graphical

64

model norms (SecTro, 2011), but the tool do not support the automatic verification of

their properties.

AORML

ST

OperA

NormML

Context analysis

Involved
Entities

Same entity
analysis

Other entities
relations analysis

Deontic

concept

Oposite deontic
concepts analysis

Same deontic
concept analysis

Actions

Same action
analysis

Other actions
relations analysis

Activation constraints

analysis

Sanctions analysis

Automatic analysis

(by tool)

Table 4.2 Checking for conflicts analysis

The OperA organizational model allows the automatic verification of conflicts

between the norms that apply to a given entity. However, such mechanism does not

give support to the checking of conflicts between norms applied to different entity

types, i.e., between the norms applied to a group and the norms applied to roles to

be played in the group or agents that are executing in such group. In addition, it also

does not give support for checking conflicts among norms defined in different

contexts and considering different activation conditions.

As shown in Table 4.2 and detailed in Section 3.4, NormML has a set of

operations for conflicts verification in a top-down approach that considers the

possibility of conflicts between the norms by analyzing each main element that

compose the norms, including context and sanctions that are not considered by the

65

works presented. In Chapter 7, a tool for automatic execution of this verification is

presented.

4.2.2 Other approaches that deal with norm conflicts

Cholvy (1999) addresses the problem of norms consistency and the need for
its verification. In Cholvy (1999) a SOL-resolution (Inoue, 1992) was proposed to
prove that conflicts exist and identify them. The deontic concept analysis includes
both opposite deontic operators checking (contradictions) , e.g. if one norm states a
permission to perform an action and another norm states a prohibition to perform it,
and same deontic operator checking (dilemmas) , e.g. if one norm states a obligation
to perform an action and another norm states a obligation to not perform it. Different
roles played by the same entity and values of predicates are considered during the
analysis.

In Oren et al. (2008) the authors point out that there are conflicts between
obligations and prohibitions, and permissions and prohibitions to the same agent or
role to execute actions over the same states. They also consider that there are
conflicts between obligations related to states that are mutually exclusive. The norms
analyzed in this work do not have any kind of activation constraint.

In Gaertner et al. (2007), Garcia-Camino et al. (2006), Kagal and Finin (2005),
Kollingbaum et al. (2008) and Vasconcelos et al. (2007) the authors consider that
there is a normative conflict when one norm states an obligation or a permission and
the other norm states a prohibition on the same agent or role to execute the same
action at time intervals that intersect. In Gaertner et al. (2007) and Kollingbaum et al.
(2008) they extend the analysis to actions that are of the same domain. In Kagal and
Finin (2005) only communicative actions are mentioned.

In Kollingbaum et al. (2007) and Kollingbaum and Norman (2006) the authors
point out that there are conflicts between permissions and prohibitions, and
inconsistencies between obligations and prohibitions to the same role to execute the
same action. They also consider that there are inconsistencies between obligations

related to the execution of actions at the same time but they do not emphasize it. The

66

norms analyzed in this work can have a set of states as activation constraints but
they do not consider this in its conflict detection.

None of the works reviewed considers the special case of conflicts between
obligations and permissions that may occur when an agent is obliged to execute an
action when it has not a permission to do so. Also, none of them consider all the main
elements of the norm while checking for conflicts as NormML does.

There are research in the area of norm conflicts that investigate conflicts
between the norms and other elements of the system as goals of the system (Modgil
and Luck, 2009) or conflicts between deadlines of the norms (Lopes-Cardoso and
Oliveira, 2008, Lopes-Cardoso and Oliveira, 2010), but these questions are out of the

scope of our work.

CHAPTER 5: EXAMPLE APPLICATION

In this chapter we provide an example of an application in the area of
Conference Management to illustrate the use of norms in a MAS. This example was
chosen since it has been used by several authors, such as Zambonelli et al. (2001),
Dignum (2004) and Harmon et al. (2008), to illustrate their approaches.

5.1 CONFERECE MANAGEMENT SYSTEM

In order to exemplify our approach, we describe a simplified version of a
conference management system of a local conference. The local conference is being
represented as an organization that inhabits the conference society environment.

Consider the following conference management process illustrated in Figure 5.1.
notification deadline

A |
Paper 4 "B Conference W
Submission o Registration

submission deadline registration deadline

Figure 5.1 Conference management process of the local conference

The local conference defines the following roles to be played by the agents:
organizer, conference chair, website manager, reviewer, author and speaker. The
roles conference chair, website manager and reviewer are sub-roles of the role
organizer.

The conference chair runs the conference and is responsible for the
coordination of the review and publication processes. During the paper submission
period, authors can submit papers, and after that the reviewers must review the
papers received until the notification deadline. Then, the conference chair

communicates the authors about the status of their papers: accepted or rejected.

68

Authors who had their papers accepted must register on the conference.
When registered, the authors guarantee that their accepted papers will be published
in the conference proceedings and they can present the paper as speakers in the
conference.

Taking into account what was exposed, we describe a set of eleven norms
that govern the simplified version of the local conference management system. For
some of the norms we have specified the sanctions (punishments or rewards) the
agent should receive if it violates or fulfills the norm. Note that those sanctions are
also norms that are activated when the related norm is violated or fulfilled. All norms
are defined in the context of the organization LocalConference that inhabits the

environment ConferenceSociety.

N1: Organizers are prohibited to submit papers.

= N2: Reviewers are allowed to submit papers.

= N3: The conference chair has the permission to extend the submission

deadline at the submission deadline if the number of papers received < 50.

= N4: Reviewers are prohibited to review their own papers.

= N5 (Punishment for the violation of N4): Reviewers have their role
canceled.

= N6 (Punishment for the violation of N4): The conference chair is obliged to
discard the paper.

= N7: Reviewers are obliged to review the papers before the notification

deadline.

= N8: The conference chair is obliged to send an author notification to the

authors at the naotification deadline.

= NO9: Authors are obliged to register at the conference before the registration

deadline if the paper was accepted.

69

= N10 (Punishment for the violation of N9): The conference chair is obliged to
exclude the paper from the list of publication.

= N11 (Reward for the fulfillment of N9): Authors are permitted to commit as
speakers.

In Section 6.1, we show how to use the modeling language NormML to model
those norms and verify if there are any conflicts between them. Also in sections 6.2,
6.3 and 6.4 this application is used to compare NormML with the most relevant MAS

modeling language, methodology and organizational model.

CHAPTER 6: EVALUATION

In the previous chapters, we presented the normative modeling language
NormML that allows the modeling and validating of the norms of a MAS and the
checking for conflicts between them (Chapter 3). We have also discussed how the
modeling of norms and the checking for conflicts are represent in the MAS modeling
languages, methodologies and organization models (Chapter 4).

In this chapter we use the norms described in Chapter 5 that are used to
govern a simplified version of a conference management system of a local
conference with the aim to validate the approach presented in this dissertation.

In Section 6.1 we show how to use the modeling language NormML to model
those norms and verify if there are any conflicts between them. In the following
section, the example is used to compare NormML with the AORML modeling
language (Section 6.2), the Gaia methodology (Section 6.3) and the OperA
organizational model (Section 6.4). The three of them were chosen because they are
the modeling language, methodology and organizational model with more items
checked in Table 4.1 of Chapter 4. Thus, the final remarks are addressed in Section
6.5.

6.1 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH
NORMML

The local conference management system defines a set of eleven norms
inserted in the context of the organization LocalConference to restrict the behavior of
entities playing different kinds of roles. From this set of norms: (i) six norms are
obligations, two are prohibitions and three are permissions; (i) one restricts a
communicative action; (iii) five are activated by the achievement of systems states
and two are activated by dates; and (iv) four are sanctions. Table 6.1 presents the
main elements of the norms of the local conference management system with more

details.

71

Norm Deontic Involved Action Activation Sanctions Context
concept entities constraints
N1 Prohibition | All agents Non- - - The organization
playing the role | communicative Local
Organizer action “submit Conference
paper”
N2 Permission | All agents Non- - - The organization
playing the role | communicative Local
Reviewer action “submit Conference
paper”
N3 Permission | All agents Non- If number of - The organization
playing the role | communicative papers received Local
Conference action “extend the |< 50 Conference
Chair submission
deadline”
N4 Prohibition | All agents Non- If author of Punishment | The organization
playing the role | communicative paper = name |N5 and Local
Reviewer action “review of Reviewer punishment Conference
paper” N6
N5 Obligation All agents Non- Violation of N4 |- The organization
playing the role | communicative Local
Reviewer action “cancel role Conference
Reviewer”
N6 Obligation All agents Non- Violation of N4 |- The organization
playing the role | communicative and Local
Conference actionﬂ“discard If author of Conference
Chair paper paper = hame
of Reviewer that
violates N4
N7 Obligation All agents Non- Before the - The organization
playing the role | communicative notification Local
Reviewer action “review deadline (e.g. Conference
papers” 31/03/2011)
N8 Obligation All agents Communicative If notification - The organization
playing the role | action of sending deadline (e.g. Local
Conference an “author 31/03/2011) Conference
Chair notification”
N9 Obligation All agents Non- Before the Punishment | The organization
playing the role | communicative registration N10 and Local
Author action “register at | deadline (e.qg. reward N11 Conference
the conference” 31/04/2011)
and if author
have paper
accepted
N10 Obligation All agents Non- Violation of N9 |- The organization
playing the role | communicative and if author of Local
Conference action “exclude the |paper = name Conference
Chair paper” of author that
violates N9
N11 Permission | All agents Non- Fulfillment of N9 | - The organization

playing the role
Author

communicative
action “commit role
Speaker”

Local
Conference

Table 6.1 Main elements of the norms of the local conference management system

72

Considering the information of the main elements that composes the norms of
Table 6.1, the NormML graphical model of the local conference management system
was created. Due to the available space, the graphical model of the local conference
management system will be presented in pieces. Figure 6.1 shows the graphical

model of the norms N1 and N2.

==<Environment==
ConferenceSociety

- environmeni

OrganizationinhahitEnvironment
L organization

=z=0rganization=» I organizationalContext
LocalConference

- organizationalContext

NormlnConteldOrganization >

~organization NorminContejOrganization

RoleOfOrganization

- rale 2<Roles»
==Role== Reviewer
organtear <t name : helief

submitPaper : agentAction reviewPaper : agentAction
reviewPapers : goal
- restrictRpleBehavior -access

-access | - restrictRoleBehavior
ResourceAsglgnmentMorm

; ResourceAssjgnmentNorm NormAssignmentRole
NormAssignmentRole

- norminContext) _ rgleHasNorm - isAssigned -isAskigned - roleHasNorm [herminContext
<<N0rm>> €<N0rm>>
<=Prohibition=> <=Permission=»
N1 N2
==agentActionAction=> Organizer.submitPaper : execute =<agentActionAction=> Reviewer.submitPaper : execute

Figure 6.1 NormML graphical model of N1 and N2

The LocalConference organization is represented as an UML class with the
stereotype <<Organization>> and the ConferenceSociety environment is represented
as an UML class with the stereotype <<Environment>>. The LocalConference
organization belongs to the ConferenceSociety environment as represented by the
relationship OrganizationinhabitEnvironment. LocalConference is composed of the
role Organizer (roles are also represented as an UML class with the <<Role>>
stereotype) that is extended by the role Reviewer and ConferenceChair (represented
by the generalization relationship). As a result, Reviewer and ConferenceChair
implicitly inherit the agent action submitPaper defined in Organizer (represented as
an attribute of the type agentAction).

73

The Reviewer role has an agent action called reviewPaper, a belief called
name and a goal called reviewPapers. Beliefs and goals are represented as
attributes of the type belief or goal respectively (see the Reviewer class in Figure
6.1).

Norms are represented as UML classes with the stereotype <<Norm>>, a
second stereotype describing its deontic concept (e.g. <<Prohibition>>,
<<Permission>> or <<Obligation>>), and third stereotype describing its sanction type
only used if the norm is a sanction (e.g. <<Punishment>> or <<Reward>>). All norms
are in the context of the LocalConference organization (represented by the
relationship NormInContextOrganization).

N1 restricts the behavior of the role Organizer (represented by the relationship
NormAssignmentRole) stating a prohibition to the execution of the action
submitPaper (represented as an attribute with the stereotype <<agentActionAction>>
and the type execute). N2 restricts the behavior of the role Reviewer stating a
permission to the execution of the same action.

The Conference is modeled in Figure 6.2 as an Entity and has the attribute
numberOfPapers of the type int. The papers of the conference are modeled as an
Entity called Paper and it has the attribute author of the type String. Entities are
represented as UML classes with the stereotype <<Entity>> and their attributes are
represented by attributes in the attribute compartment of the classes.

The ConferenceChair role has an agent action called
extendSubmissionDeadline and a protocol called authorNotificationProtocol which
contains the message authorNotification. Protocols are represented as an attribute of
the type protocol that has a constraint indicating its messages (see the
ConferenceChair class in Figure 6.2). N3 in Figure 6.2 restricts the behavior of the
role ConferenceChair by stating a permission to the execution of the action
extendSubmissionDeadline if the number of papers of the conference is < 50
(represented as an attribute with the stereotype <<conditionalAttribute>>, the type
lessThan, and the initial value 50) and if it is 28/02/2011 that is the date of the

submission deadline (represented as an attribute with the stereotype <<if>>).

74

uoneziuefio

AU -

1 siadediolaguiny | o | Bus ioyne
aJuaiaoy S aaTIaan 1aded
==fuT== i’ Jadetk: ==AuT==
JUIBISUOD -

ULONUBLWIUBIESYUIRISUOD

Agpaulensuod

BABILIE : SIA0E JMBIABI 1BMBIABY «<=<UONIY|E0fs>

LLOZIEDILE <=Bl0ja0=>

05 = UeY] $53| : S1adedi0IaguInu aauaiaung <<angupy|eu
3IN28%a ; BUIIPEAJUOISSILIGNSPUBRE IIEYDSIUBIBIUOD <<UDJIWUO]

LOZITOIBT <<il==

PUaS | UONEILIONIOYINE JIBYDBIUBIBIIOS <<UDIYaAESSa s>

LLOZIEDILE <<dl==

|eof : siadedmalnal
uoiauahe : 1adedmalasl
18118 : aweu

1amalnay
=2=8|0y=>

uonAuahe adednuigns

IN EN 8N
z=zUuonefgos== zzUISSIWad=> z=zuonefgo==
==UWUON== ==UNON== ==UWUON==
HEUOQUIUIOU - paulISgys] - LUONSEHS|0) - PERISSYST LioNSEHS|0M - paubissys! - [MauoQuUILIoU -
1S SO
BI0MUBLILDISSYULON VWION B uioNUuaWUblSsyaunosay
LoNUaLIUR)SSYaInosay 3|0guaUBISSYUUON
FU0JU[ULION
SSPAEis Jouetegalodusel” oleYBGaI0MIIMSal - [s5ad0E -

{uonEIRNONIOYINE} [020]04d : |090}0IJUONEINONIOYINE
uoijuahe | aulpEaQUOISSILIGNSPUBKE

JAN

13zueh1o
<<3|04=>=

3|04 -
uoiezZIuERIOI08|0Y

11I_YD3IUIBIU0D)
==8|0y=>=

uajeziuefio -
UoReZIUERIQXBIUOJUIULION P
FEU0D[EUDEZIUERID
aJualauo)iean
pEuoDeuolezIuello zzUoneziuediQs=

a0 euogeziuefio -

« VolezIueRIQpNEIUOJUIULION

uoleziueflo -

JUBLILCIAUINAEYUUOEZIUERID

JUBLILOIAUE -

£)3120533ua13JU0D)
<<JUBLIUOIAUT =

Figure 6.2 NormML graphical model of N3, N7 and N8

75

Buuls :loyne

1aded
zzAuT==

g3de -

UIESUDD

pajuoouuLiou A

ULONIUBLIUAISSYUIBASUDD P

LUONUBLIUAISSYIUIEASUOD PULISIBETT 32N0S3Y P
pauooULIoU
Agpauieysuo) Agpaulelsuo)s
[33UED [IBmalrsy <=<U0JIY3|0l== aweuiamalisy = 0] |enha ;loyineiaded <<481|3g|BUOIPUOI== 1nay = 0]|enba loyneaded <<a1|ag|BuolIpu0d= =
N UHONSEY - paublssys] - 8In1axa | Iadedmalnaliamainay <<Uuoliyuonayuales= |paufissysi- uuonsey - aja|ap [aded <<U0RIvAIUE=>
==juallysiung== ULONJOUORIUES P N UUONIQUORILES 9N
==zUoNellg0== IgIY0Id s> ==jUaWYsIUngs»
<<UWHON=» <<UWHON=» <=<UoNeRNqO==
<<WION==
paufissys) - naublssys! -
ulioNseHa0d UUONSEHB|04 5 FajuoduuIou 4

uoieziuefIoRaIU0

B|0YIUBLILUBISSYUION

558208 -\ 01AEYBT3

Y

|e0f : siade dmalnal
uoayuahe : 1adedmalnal
181180 ; aweu

101ABY3g3|04)a11S81

Jamalnay
==8|0Y=>=

OUILLION

uonezIuefIOKaU0 JUIUION Py

WAU0) [EUONEZIUEDID

EECREEE

1SS8UN0S3Y P

uoaiuahie : ladeduuigns

aj0yuaLI

Y

101ABY3g3|0M1aISBI

{uoneIuRoNIoyINE} |090J04d | |030}0I4UDREIWRONIOLINE
uogaviuahe : aulpeaguUoISSILIghSpUapE

18z2uehiio
=<8|0Y=>=

R
UoIEZIUERIQI0a|0M

uoneziuefio -

1eYH3IUBIBM0D
<<3|0y==

UolEzIuERIoKEIU0UIULION

HBU0D(EUONEZIUERIO -

aJualauolean
=<U0NeZIUERIQ >

A

WAoo BuoNEZIUERID -

uoeziuedio -

JuBLILOIAUINGRYUUONEZIUEBIO

JUBLILOIIAUS -

A)8120S32UB 0D
<<JUALIUOIAUT >

Figure 6.3 NormML graphical model of N4, N5 and N6

76

Figure 6.3 shows the graphical model of the norms N4, N5 and N6. N4
restricts the behavior of the role Reviewer stating a prohibition to the execution of the
action reviewPaper if the author of the paper is equal to its name (represented as an
attribute with the stereotype <<conditionalBelief>>, the type equalTo and the initial
value referring to the name belief of the Reviewer role).

N5 restricts the behavior of the role Reviewer by stating an obligation to cancel
the role Reviewer (represented as an attribute with the stereotype <<roleAction>>
and the type cancel) as a punishment for the violation of the norm N4. N6 restricts
the behavior of the role ConferenceChair by stating an obligation to delete the paper
(represented as an attribute with the stereotype <<entityAction>> and the type
delete) if the author of the paper is equal to the name of the reviewer (represented as
an attribute with the stereotype <<conditionalBelief>>, the type equalTo and the initial
value referring to the name belief of the Reviewer role). N6 is defined as a
punishment for the violation of the norm N4. Both N5 and N6 are sanctions of N4 and
for this reason their classes have a SanctionOfNorm relationship with N4.

N7 in Figure 6.2 restricts the behavior of the role Reviewer by stating an
obligation to the achievement of the goal reviewPapers (represented as an attribute
with the stereotype <<goalAction>> and the type achieve) before the date
31/03/2011 that is the date of the notification deadline (represented as an attribute
with the stereotype <<before>>). And, N8 also in Figure 6.2 restricts the behavior of
the role ConferenceChair by stating an obligation to send the message
authorNotification (represented as an attribute with the stereotype
<<messageAction>> and the type send) if it is 31/03/2011 (represented as an
attribute with the stereotype <<if>>).

Figure 6.4 shows the graphical model of the norms N9, N10 and N11.
LocalConference is also composed of the roles Author and Speaker. The Author role
has an agent action called registerAtConference, a belief called name and a goal
called havePaperAccepted. The norm N9 restricts the behavior of the role Author by
stating an obligation to the execution of the action registerAtConference before the
date 31/04/2011 (date of the registration deadline) if the Author achieved its goal
havePaperAccepted (represented as an attribute with the stereotype

<<conditionalGoal>, the type equalTo and the initial value true).

77

 WONUBLUBISSUIBIISUOD

WO UILIOU -

Juiensuos { FUIS Taoune

SSaJlk -

1aded
2=zfug==

Agpaulensuoss) -

ULONUBLIUAI$SYaUN0SaY

ULONIQUOIIUES P

pauBissy: wuoNsey -

awlewloyiny = 0] |enha : oyneiaded <<jalagIeuciipuods»
aja|ap : Jaded <<U0lIyAIUaS >

OLN

uolezIueBIQKBUOUILION P

paubissys)

ani) = 0] |enba : pajdadyiadedaey Iouny <<|209|EUDHIPU0I=>
W LLOZIP0ILE <<810j80=>=
3IN28x%8 | BIUBIBUODIIBISIFALIOYINY <<UDIYUONIUEHES =

Ao UILIOU -

<<JUBLILOIAUT > =

<<JUBLIYSIUNG=> 6N paubissysy- « WoNIOUORIUES
=<U0lehlg0== =<U0ledlg0==
<=<ULION=> 2<UMON== uoneziuefio
UUONSEHB[0! AgpaulensuoDst - pauhissys! - UHUONSEHB3|04 - paulelsuogs -
<« WHONUBLILAISS SiosiEUBleSYIE
B10HIUAWLRISSYUHON syaanosay 1 o Lo ULONUBLIUBIE SUIRASUDD
ULoNSeY -
101AeYaga|duiasal -
101ABYag83|041a1s81 UIENSUDD -
TR N0 © 183eads <<U0)Iya|0ls>
{UoREINNONIOYINE} |030}04d | [00J04JUONEILONIOLINE Wiensuoay Uonaviuaie : sausisoosisIfal <« B10HjuauufIssyULON LIN
uonayiuahie | aulpeaguUoISSILIGNSpUaE 181180 ; awey [40MEYIFII0GRSEL - UIONSEHB|0I 2<PIBMBY >
1eyHasualauo) Joynyg AnCAoA_M“_%nvmmuv
<=3|0Y== =<3|0Y==
T PEUODUILLIOU \ paunIssys! -
'OnEZIURBIOpEIUO DU UION
uoleziuefI0N08|0y
UUONIUBLIUD[SSYaIN0sa
uofeziuefio Hauoneuoeziuedio - N % H
uonayuahe iadeduuigns 2104 - uoeziuefio
® uoneziuefioioaloy
19z1uefiio UNEZILERIOIOEI0M P 83UaI3Ju0dIe0] c“mw_cmms. TS 1oyeads |l
=<8|0y>> z=zUoneZIuelIQ=» Hezl =23|0Y==
i uoneziueflo - ajuog|euoneziuefio -
RO STEoTEz] 5 JusLUoIAUINGEMUUONEZIUERIQ
JUBLILOIAUS -
£)3120533U313)107)

JUODUILUION

Figure 6.4 NormML graphical model of N9, N10 and N11

78

In case of violation of N9, N10 states a punishment by restricting the behavior
of the role ConferenceChair as an obligation to delete the paper if the author of the
paper is the name of the author that violated N9.

In case of fulfilment of N9, N11 states a reward by describing a permission to
the role Author to commit with the role Speaker (represented as an attribute with the
stereotype <<roleAction>> and the type commit).

In Appendix G all the abstract models of the norms of the local conference
management system are illustrated.

NormML also offers a check for conflicts mechanism (previously detailed in
Section 3.4) that is capable of verifying all the norms two by two with the aim of
finding out conflicts between them. By applying such mechanism in the norms of the
local conference management system, it detected that norms N1 and N2 are in
conflicts because they are both in the same context (the LocalConference
organization), restricting the behavior of related entities (the role Organizer is super-
role of the role Reviewer), with opposite deontic concept operators (prohibition and
permission), to execute the same action (submitPaper) in periods of time that

intersects since both have no activation constraints, i.e. they are always active.

6.2 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH
AORML

AORML is a modeling language to the modeling of organizations and
organizational systems. In AORML there are no distinctions between agents and
roles, and organizations are modeled as institutional agents.

In AORML the agents have three kinds of obligations. Two are represented by
the commitment/claim relationship and describe a compromise between two agents.
The last one is represented by the hasDutyTo relationship between agents and
actions or messages, which means that the agent must execute such action or
send/receive such message. In the same way permissions and prohibitions can be
modeled respectively by the hasRightTo and hasNoRightTo relationships.

The commitment/claim relationship can be seen as an obligation in the context

of an interaction, and the hasDutyTo, hasRightTo and hasNoRightTo relationships as

79

norms of an organizational context. In the commitment/claim relationship a
deadline can be described as activation constraint. But in the hasDutyTo, hasRightTo
and hasNoRightTo relationships there is no way to describe any kind of activation
constraint.

Taking into account such characteristics, the norms N3, N4, N5, N6, N9, N10
and N11 of the local conference management system could not be fully modeled with
AORML because of their activation constraints. And the norms N7 and N8 could only
be modeled if they are represented as commitments in an interaction context which
was not the context defined by the application.

In AORML, the violation of a norm is only considered when an agent does not
fulfill a commitment but the language does not provide ways to describe sanctions.
Thus, none of the sanctions of the example can be modeled with AORML.

The AORML language assumes that there is a normative inconsistency when
there is at the same time a permission and a prohibition (which is the case of norms
N1 and N2), or a prohibition and an obligation, to the same action. Although the
language considers that such kind of conflicts can occur, it does not have a

mechanism to detect these conflicts as NormML does.

6.3 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH
GAIA

Gaia is a methodology to the analyses and design of MAS that is basically
represented as an organization with a set of roles interacting. In Gaia it is possible to
describe organizational rules to the roles of an organization. Those organizational
rules can be viewed as obligations, when they describe things that a role must do
(liveness rules) or guarantees (safety rules), or they can be viewed as prohibitions,
when they describe things a role must not do (liveness rules).

Expressions based on temporal logic (Manna and Pnueli, 1992 and Manna
and Pnueli, 1995) can be described as organizational rules, including communicative
and non-communicative actions and the achievement of states. Each organizational

rule can have one activation and one deactivation condition.

80

In Gaia, only static permissions can be described to the reading and modifying
of objects of the system. The static permissions, and the obligations and prohibitions
of the organizational rules cannot be violated by the roles, thus the language do not
address the question of punishments or any kind of sanction.

After analyzing the example of the local conference management system, we
have found out that norms N5, N6, N10 and N11 could not be modeled in Gaia
because they are activated by the violation/fulfilment of other norms. Norms N2, N3
and N11 could not be described too because they state permissions over the
execution of actions, and by using Gaia it is not possible to describe permissions.

Assuming hypothetically that norm N2 could be modeled by the methodology,
the conflict between the norms N1 and N2 could not be found by this methodology

because it does not have a mechanism to detect norms conflicts.

6.4 MODELING THE LOCAL CONFERENCE MANAGEMENT SYSTEM WITH
OPERA

OperA is an organizational model that prescribes a formal structure for
organizational processes, including normative issues. With OperA obligations,
permissions and prohibitions can be described to agents, roles, agents playing roles,
groups of agents and all agents of the system in the context of an organization, an
interaction scene or a transition of scene.

The norms restrict the execution of communicative and non-communicative
actions and can be activated by one or more events as an activation condition, a
maintenance condition, an expiration condition or a deadline. The events can refer to
actions, time expressions, changes of system states and the fulfillment/violation of
another norm. Punishments can also be described to a norm that was violated.

Given the foregoing, only the norm N11 of the local conference management
system could not be modeled with OperA because it is a reward of norm N9 and by
using the organizational model it is only possible to model punishments.

The OperA organizational model allows the automatic verification of conflicts
between the norms that apply to a given entity. However, such mechanism does not

give support to the checking of conflicts between norms applied to different entity

81

types, i.e., between norms applied to related entities. For instance, the mechanism
does not give support to the checking of conflicts between norms applied to roles in
the same hierarchy as it is the case of norms N1 and N2.

6.5 FINAL REMARKS

In this chapter we showed that NormML is able to model different kinds of
norms, as the norms of the local conference management system, encompassing all
the main elements that compose the norms, and after all, checking for conflicts
between them.

The same is not possible when we try to execute such task with the MAS
modeling languages, notations of methodologies and organizational models
available, because, as presented before in Chapter 4, they do not support all the
main elements of the norms or they do not offer a mechanism to detect norms
conflicts. Even considering the works that model more elements, following Table 4.1
of Chapter 4, we demonstrated that they fail. The AORML modeling language and
the Gaia methodology failed in modeling a set of elements. Although the OperA
organizational model is more complete while describing norms and checking for
conflicts, it does not provide a graphical representation to the norms.

Differently from the related work analyzed, NormML was designed specifically

with the aim to model the norms of MAS and check for conflicts between them.

CHAPTER 7: THE NORMML TOOL KIT

In this chapter we present the NormML Tool Kit that allows the creation of
NormML models, the automatic validation of them and the checking for norms
conflicts.

The NormML Tool Kit is composed of two plugins: NormML Editor and
NormML Conflict Checker. They both were developed as plugins to the Eclipse
framework (The Eclipse Foundation, 2011). The Eclipse IDE (Integrated
Development Environment) has quickly grown in the developing software community
over the last few years becoming a popular IDE for software development, especially
for Java based applications. The Eclipse IDE is open source and its framework is
easily extensible, therefore the building of plugins for this IDE became a common
practice.

Each plugin used in the NormML Tool Kit has a set of features to cover all the
steps of the design of the MAS norms. Figure 7.1 illustrates the process used by the
NormML Tool Kit by showing the activity and identifying the plugins used in each one.

Checking For Conflicts
NormML Conflict

Checking (Concrete)
Models

NormML Editor Plugin

Modeling Norms

NormML Editor Plugin

Checker Plugin

Transforming Concrete to
Abstract Models
¢ Checking (Abstract) Models

‘* Running Operations for
Checking Conflicts

Figure 7.1 The NormML Tool Kit process

The NormML Editor plugin is used to model the norms following the concrete
syntax proposed by the NormML modeling language described in Section 3.5. Such
editor also gives support to the checking of such concrete models in order to
guarantee its syntactical correctness. It checks if the models are well-formed

according to the metamodel that represents the concrete syntax (see Section 7.2).

83

After checking the concrete models, the norm designer can use the NormML
Conflict Checker plugin to check the conflicts among the norms modeled. In order to
do so, the plugin transforms the concrete models into abstract models and validates
the abstract models. Such validation is done by checking the well-formedness of
such models according to the NormML metamodel. If all the norms could be
validated, the operations for checking the conflicts are executed.

The validation of the abstract models could be skipped if the user would
always do the checking of the concrete models since the transforming of concrete to
abstract models is correct. Another reason to maintain the validation of the abstract
models apart of the checking of the concrete models is to allow the user to check for
conflicts between the norms independently of the use of the NormML Editor to
construct the models. Thus, the user could use any editor to construct the norms
models, for instance a simple text editor, and still use the NormML Conflict Checker
plugin.

The next sections detail each feature of the NormML Tool Kit discussing the
technology used and the support given by its activity. The norms of Chapter 5 are

used to illustrate the applicability of the tool.

7.1 MODELING NORMS

The modeling of norms can be done in the NormML Editor plugin developed
by using the Eclipse Modeling Framework Project (EMF) (Eclipse Modeling
Framework Project, 2011). EMF is a modeling framework and a code generation
provider for the building of modeling tools and other applications based on a
structured data model. EMF consists of three elementary parts: EMF(core), EMF.Edit
and EMF.Codegen. EMF(core) has a metamodel (Ecore) for describing models that
was used in the development of the NormML Editor to define the NormML concrete
metamodel.

EMF.Edit provides generic reusable classes for building editors from EMF
models and EMF.Codegen provides the generation of everything needed to build a
complete editor from an EMF model by using the editor interfaces. Both of them were

employed to generate the NormML Editor from the NormML concrete metamodel

84

described in Ecore. The NormML Editor has a wizard to assist the creation of norms

diagram that are saved as a *.normml file (Figure 7.2).

réNew @M

Select a wizard

Create a new NormML model

Wizards:
type filter text

& Class
@ Interface
22 Java Project
s Java Project from Existing Ant Buildfile
4 Plug-in Project
= General
b & CVS
I (& Eclipse Modeling Framework
> [Ecore Tools
4 (= Example EMF Model Creation Wizards
¥ Editor Model
&7 UML Model
[S7 XSD Model

>

m

@ < Back Next > Finish

Figure 7.2 The NormML Editor wizard

i = Resource - NormML/LocalConference.normml - Eclipse Platform L‘_M’-:‘ (=, T
File Edit Navigate Search Project Run (EormML Editor) NormML Conflict Checker Window Help
i o PN Qo P l v %0 D v D 5 (5 Resource |
(@ Project Exploer 22 = O[5 tecalConferencenommi & ==
I= —5. ‘) = [Resource Set

| 3 NormML

| I3 &7biéfform:/resource/Nﬁi\dL/LocalCoinference.normml

% LocalConference.normmiy 1 4 < Norms Diagram 2

< Environment ConferenceSociety
4 Organization LocalConference

» < Role Organizer

> % Role Reviewer

i+ 4 Norm N1

o 4 Norm N2

Selection | Parent L;tiTrée Table| Tree with Columns \

Figure 7.3 Eclipse perspective of the NormML Editor plugin

Figure 7.3 shows the Eclipse perspective when the *.normml file (selected in
item 1 of Figure 7.3) is opened with the NormML Editor window (highlighted by item 2
of Figure 7.3) and its menu (stressed by item 3 of Figure 7.3).

85

The NormML model is represented as a tree of nodes. The entities of the
NormML model (agents, roles, organizations, environments, entities and norms) are
created as nested nodes of the Norms Diagram element and their properties and
relationships can be edited in the Eclipse Properties View. Figure 7.4 illustrates the
creation of norm N1 of Chapter 5 in the Norms Diagram (highlighted by item 1 of
Figure 7.4) and the assignment of the norm to the role Organizer in the Properties
View (item 2 of Figure 7.4).

% *LocalConferencenormml £ =0 & *LocalConference.normml &2 i
L} Resource Set 17 Resource Set
4 4 platform:/resource/NormML/LocalConference.normml @l platform:/resource/NormML/LocalConference.normml
4 4 Nomr—"" < Norms Diagram
- » =
¢ New Child s iy 4 Environment ConferenceSociety
¢ () Undo Delete CtivZ @ Environment ¢ Organization LocalConference
f N1 i o Organization Role Organizer
¢k 40 Agent < Role Reviewer
+ 0ot cut A 4 Norm Ni
4% Role & Norm 2 y
: 4% Nom 1 o 4 Restct Role Behavior ~ Nom N1 2 [/ {E) e
Filter Available Choices
e Choice Pattern (* or ?)
Validate
Choices Feature
Selection | Paref i) Selection| Parent] List| Tree | Table| Trd | [Role Organizer | T Add | I Role Organizer 11§
= = » B v = = = > 1| | < ji E
v Tasks| E1 P Run As B;ﬁ' o g) Tasks | 5 Properties &3 Role Reviewer | F O
- Debug As) , R Remove -
roper ropel
e Profile As 4 : 3
Ccess
0K Cancel
ean t Environmental Context [—J [—J
Compare With 4 Has Sanction
Replace With » Name IENL
WikiText » Organizational Context > Organization LocalConference
Restrict Agent Behavior
Load Resource... Restrict Environment
Restrict Organization
efresh Restrict Role Behavior E]
Show Properties View Sanction = null
> 7 3 Ty Type *Z Prohibition
e from Context Ctrl+Alt+Shift+ Down
< I » 7yiP n »

Figure 7.4 Creation and edition of N1 in the NormML Editor plugin

7.2 CHECKING (CONCRETE) MODELS

The checking (or validation) of the concrete models is also done by using the
NormML Editor plugin. Such validation uses the automatic support provided by EMF
to validate models following the constraints of the defined metamodel. Constraints
such as OCL invariants can be defined by the creation of the EAnnotation element of

the Ecore editor.

86

Figure 7.5 shows an OCL invariant example called
“NormContextCanNotBeNull” written by using the EAnnotation element. Since such
invariant applies to norm, it was included in the Norm class of the concrete syntax
metamodel. The invariant guarantees that each Norm will be in one context

(organizational or environmental context).

H MNorm
=) Ecore
= OCL
MNormContextCanMotBeMull -= ...

= Value -- NormContextCanMotBeMull - ... ﬁ

Enter a value:

@ Error Lo [0]4] l Cancel l

Property
Key = NormContextCanMatBeMull
Value I

Figure 7.5 OCL invariant example in the Ecore editor

Supposes that N1 from Chapter 5 were modeled without inform its context (the
LocalConference organization) as indicated in item 1 of Figure 7.6. By selecting the
“Validate” item at the NormML Editor menu (see item 2 of Figure 7.6), an alert
message would appear informing that the “NormContextCanNotBeNull” invariant was

violated (see Figure 7.7).

MNormML Editor | MormML Conflict Checker Window Help

New Child N = ([Resource |

Mew Sibling 4

=0

Caiate) 2

Control...

LocalConference.normml
Load Resource...
nceSociety

Refresh
nference

Show Properties View

- <~ RoleReviewer
[<4 Morm N1
[4 Morm M2

Selection‘ Parent| Listl Tree| Tablel Tree with Celumns

] Tasks | = Properties &2 EE0 =

Property Value
Access <+ Role Organizer
Envirenmental Context
Has Sanction
MName = N1
1
Restrict Agent Behavior -

Restrict Environment
Restrict Organization

Restrict Role Behavior <+ Role Organizer
Sanction 5= null
] Type = Prohibition

|l i |]

Figure 7.6 N1 violation of “NormContextCanNotBeNull” invariant

5 Project Explorer 52 . = O @ LocalConference.normml 53

<f;>| i = fi\j Resource Set

=+ MormML l¢ platform:/resource/NormML/LocalConference.nomml
@ LocalConference.normml <= Morms Diagram

< Environment ConferenceSociety

<4 Organization LocalConference

< Role Organizer

< Role Reviewer

Progress Information
@ Validating Morm N1 |

p
2 Validation Problems |

Problems encountered during validation

Reason:
Diagnosis of Norm N1

[ok][<<peais |
)-'-'-——'_—_7 _H;

@ The 'MormContextCanMotBeMull' constraint is violeted on 'Norm N1'

Figure 7.7 N1 violation of “NormContextCanNotBeNull” invariant result

88

7.3 CHECKING FOR CONFLICTS

Finished the modeling and validating of the NormML concrete models in the
NormML Editor plugin, the norm designer can use the NormML Conflict Checker
plugin to check the conflicts among the norms modeled. In order to do so, the plugin
transforms the concrete models into abstract models and checks (or validates) the
abstract models.

By selecting the “Check for Conflicts” item at the NormML Conflict Checker
menu (highlighted in Figure 7.8) the transformation will be executed (see Section
7.3.1), and after it, well-formedness rules operations. If the model is well-formed, then
the check for conflicts operations will be executed. Both well-formedness rules
operations and check for conflicts operations were implemented with EOS (Eye OCL
Software) (The EOS Component, 2011) as demonstrated in Section 7.3.2.

= | B [t

= Resource - Eclipse Platform

File Edit Mavigate 3Search Project Run [NormMLConflictChecker] Window Help
e & m % - C:_T:Eeckfnr Conflicts Ctrl+8
L[5 Project Explorer &2 =0 =B
N
4 = MormML
4 LocalConference.normml

Figure 7.8 NormML Conflict Checker menu

If there are any conflicts between the norms of the model, an alert message
will be shown as illustrated in Figure 7.9 to the local conference management system

model verification.

89

= Resource - Eclipse Platform |ﬂl
File Edit Mavigate Search Project Run MormML Conflict Checker Window Help
- oin s (SR
{5 Project Explorer 23 =B =B
=R
= MormML
i LocalConference.normml
A " A

= NormML Conflicts Checker &J

'0' Checking the well-formedness of the model: Great, the model is well-formed!
o Checking for conflicts: There are conflicts between the norms of the model!

Details:
The Set{ N1 }is in conflict with Set{ M2 }.

b

Figure 7.9 Check for conflicts result of the NormML Conflict Checker plugin

7.3.1 Transforming concrete to abstract models

While the concrete models are described in XML (Extensible Markup
Language) as *.normml files, the abstract models are described by using EOS in
* java files. EOS is a Java API (Application Programming Interface) that allows the
description of class and object diagrams, the implementation of operations in OCL
and their execution over object diagrams. In our case, a class diagram is used to
model the NormML metamodel and object diagrams are used to describe the
abstract models of NormML, which are composed of elements that are instances of
the metaclases of the NormML metamodel.

Figure 7.10 shows a piece of the NormML metamodel as a class diagram
implemented in EOS and Figure 7.11 illustrates the abstract model of norm N1 as an
object diagram also described in EOS.

The metaclasses of the NormML metamodel are included in the class diagram
as classes by using the “insertClass” method and by informing the class name as
parameter. Line 10 in Figure 7.10 illustrates the creation of the Norm metaclass. The
association relationships between the metaclasses of the NormML metamodel are

included in the class diagram by using the “insertAssociation” method and informing

90

the classes names, association ends names and multiplicities as parameters. Line 19

in Figure 7.10 depicts the creation of the NorminContextOrganization relationship.

[J] *Metamodeljava &

3 import core.IEQS;

5 public class Metamodel {
B public static void createMetaModel (final IECS enviromment) {

environment.createClassDiagram{);

environment.insertClass ("Norm");

environment.insertClass ("NormPermizsion®);

environment.insertClass ("NormCbligation®);

environment.insertClass ("NormProhibition");

environment.insertGeneralization ("NormPermizzion”, "Horm");

environment.insertGeneralization ("NormObligation™, "Norm"):

environment.insertGeneralization ("NormProhibition", "Norm");

environment.insertClass ("Organization");

environment.insertClass ("Environment™);

environment.insertdssociation ("Norm", "nornInContext®,"0..#", "0..1", "organizationalContext","0Organization");

environment.insertidszociation ("Norm", "normInContext®, "0..%", "0..1", "envirommentalContext","Environment");

Figure 7.10 NormML metamodel described as a class diagram with EOS

The generalization relationships between the metaclasses of the NormML
metamodel are included in the class diagram by using the “insertGeneralization”
method and informing the sub-class and super-class names. Line 16 in Figure 7.10
shows the generalization between the NormProhibition and Norm metaclasses.

The instances of the metaclasses of the NormML metamodel are included in
the object diagram as objects by using the “insertObject” method and by informing
the object name and the class name as parameter. The creation of the
LocalConference instance in line 10 of Figure 7.11 is an example. The relationships
between the instances of the model are included in the object diagram as links by
using the “insertLink” method and by informing the classes names, object names and
association ends names as parameters. The creation of the
OrganizationinhabitEnvironment relationship between the LocalConference
organization and the ConferenceSociety environment described in line 12 of Figure
7.11 is an example.

91

*ObjectDiagramyjava -1 =0

“ *

3 import core.*;

5 public class CbjectDiagram {

public static void create(bjectDiagram(final IFQS environment){
enviromment,createfbjectDiagram();

enviromment.insertObject ("Organization", "LocalConference);

enviromment.insertObject {"Environment"”, "ConferenceSociety”);

environment.insertLink("Organization”, "LocalConference”, "organization”, "environment”, "ConferenceSociety™, "Environment™);
environment.insertObject ("Role", "Organizer");

environment.insertLink("Organization™, "Organizer”, "organization","role", "Buyer”, "Role");
enviromment.insertObject ("AgentAction", "submitPaper");

environment.insertLink ("AgentAction”, "submitPaper”, "action”, "role", "Organizer", "Role");
environment.insertObject ("NormProhibition", "N1");

environment.insertObject {"AtomicExecute”, "executeSubmitPaper™);

environment.insertLink("Organization", "LocalConference”, "organizationalContexc”, "normInContext”, "N1", "Norm") ;
environment.insertLink{"Role", "0Organizer", "restrictRoleBehavior”, "roleHasNorn", "N1", "Norm") ;
environment.insertlink ("AtomicExecute”, "executedubmicPaper”, "access", "iskssigned”, "N1", "Norn") ;
environment.insertLink {"AtomicExecute”, "executeSubmitPaper™, "action", "resource”, "submitPaper”, "Agenthction”);

1{ i I

Figure 7.11 N1 abstract model described as an object diagram with EOS

A transformer developed in XSLT (Extensible Stylesheet Language
Transformations) (W3Schools, 2011a) was implemented to automatically transform
the NormML concrete models into NormML abstract models. XSLT is a XML-based
language used for the transformation of XML documents into new documents of any
kind, based on the content of the XML documents. In the transformation process,
XSLT uses XPath (W3Schools, 2011b) to define parts of the source document that
should match one or more predefined templates in the transformation file. When a
template is applied, XSLT will transform the matching part of the source document
into the result document according to the template.

In our context, the XSLT transformer receives as source document the
*normml file of the concrete model described in XML and creates as a result
document a *.java file with the abstract model described following the EOS syntax.
The XSLT transformer executes a set of XSL transformation rules presented in
Appendix F.

For instance, Figure 7.12 illustrates the code in XSL of the implementation of
Rule 1. The template searches the source document for an “environment” element

and creates on the result document the EOS command line to create an instance of

92

the Environment class, replacing the name of the instance by the name of the
environment in the source document (see line 21 of Figure 7.12).

Rulel. For each Environment env of M, insert in M an object env of the class

Environment.

|| *MNormMLConcrete2Abstractxsl &2 =8

189 </xsl:template> -~
Z0<x=sl:template match="environment">

21l environment.insertObject ("Environment™, "<x=sl:value-of select="@Enams="/>"):

22 </x=sl:cemplate> =

Figure 7.12 XSL template that implements Rulel

7.3.2 Running operations to check the abstract models

With the abstract models described with EOS the user can check for conflicts
between the norms of the models in the NormML Conflict Checker plugin. The check
for conflicts OCL operations were implemented in EOS in order to evaluate the object
diagrams.

Also, the well-formedness rules described in OCL were implemented with EOS
to execute a last verification in the models before the checking for conflicts
operations to assure that the abstract models are well-formed. Figure 7.13 shows an

example of OCL operation described with EOS.

] *CheckForConflictsjava &4 -0
enviroment,insertOperation("3et (Nomm) ", "checkingForConflictsMain”, "Boolean”, B
"if (self-»exists(nl,n2:Norm| (nl<>n2)and(nl.checkingForConflicts(n2))))then(true)else(false)endif”, new Object[0]); &

o

{ ([} 3

Figure 7.13 Main OCL operation of the check for conflicts described with EOS

The method “insertOperation” is used to create an OCL operation with EOS

and it receives as parameters the context of the operation, the name of the operation,

93

the type of the element to be returned, the operation itself and a list of parameters to
be used in the operation.

Figure 7.13 illustrates the creation of the OCL operation
“checkinfForConflictsMain” that has a set of Norm elements as context and a
Boolean value as return type. This operation calls, for each two different norms of the
set, another operation (“checkinfForConflicts”) that will check for conflicts between
them.

In the NormML Conflict Checker we reuse some of the check for conflicts
operations and well-formedness rules implemented with EOS by Alcantara and
Marinho (2010). They developed a tool to create NormML models and check for
conflicts using EOS according to the preliminary version of NormML presented in
(Figueiredo and Silva, 2010b).

CHAPTER 8: CONCLUSION AND FUTURE WORK

In this dissertation we have presented a modeling language called NormML
that is able to model the norms of a MAS and to check the conflicts between these
norms at design time.

We have pointed out the main elements that compose a norm and discussed
how several MAS modeling languages and the notations provide by methodologies
and organizational models give support to the modeling of these elements and to the
checking of conflicts between norms. We have also emphasized the contributions of
the normative modeling language NormML when compared with other modeling
languages and notations used by methodologies and organization models in
chapters 5 and 6.

As showed in Chapter 3, by using NormML it is possible (i) to model norms
associated with different contexts; (ii) to regulate the behavior of individual and
groups of individuals (or organizations); (iii) to define norms that restrict the execution
of actions (including dialogical actions) and the achievement of states; (iv) to define
activation constraints based on the definition of periods between actions, periods of
time and predicates (values associated with attributes, beliefs and goals); (v) to
define sanctions associated with the norms; (vi) to validate the models according to
the well-formedness rules of the language; and (vii) to check for conflicts among the
norms of a model.

In order to support the language we have developed a set of plugins to the
Eclipse IDE called NormML Tool Kit that allows the user to construct norms models
and validate them by executing the well-formedness rules and the check for conflicts
operations over such models.

During the development of this work, preliminary versions of the NormML
modeling language were presented in Figueiredo et al. (2011) and Figueiredo and
Silva (2011), Figueiredo and Silva (2010a), Figueiredo and Silva (2010b) and Silva et
al. (2010).

The mains contributions of this dissertation are:

» The investigation of the main elements that compose the norms;

95

= The review of the MAS modeling languages, methodologies, organizational
models and other approaches that propose solutions for indentifying norms’

conflicts;

» The NormML modeling language itself, to model norms and its main elements;

= The set of well-formedness rules for the validation of the models of the

language;

» The set of operations to check for conflicts between norms that consider the

main elements that compose the norms;

= The elaboration of a concrete syntax to the language that allows the user to

create the norms’ models;

= The set of transformations rules used to transform the concrete into abstract

models;

= The tool used to (i) model and validate norms using NormML,; (ii) check for
conflicts between norms models; and (iii) automatically transform concrete
models in abstract models.

In this work we focus on the modeling of the static aspects of the norms, i.e.
the elements related to its composition. However, it is our intension to define a
sequence diagram for NormML to describe the sequence of the executed actions and
states achieved. By using such diagram it will be possible to: (i) represent dynamic
aspects as the creation, cancellation and delegation of a norm; (ii) define norms in an
interaction context; (iii) check norms’ conflicts that depend on the sequence of the
executed actions and states achieved; and (iv) identify the norms that are active and
the ones that were violated or fulfilled. It is also our aim to develop a tool for modeling

norms using the graphical representation of NormML.

REFERENCES

ALDEWERELD, H., DIGNUM, F., GARCIA-CAMINO, A., NORIEGA, P.,
RODRIGUEZ-AGUILAR, J. and SIERRA, C. Operationalisation of norms for usage in
electronic institutions. In: Proceedings of the 5th International Conference on
Autonomous Agents and Multiagent Systems, 2006. p. 223-225.

BASIN, D., CLAVEL, M., DOSER, J. and EGEA, M. Automated analysis of
security-design models. Information and Software Technology, Volume 51, Issue 5,
May 2009. p. 815-831.

BASIN, D., DOSER, J. and LODDERSTEDT, T. Model driven security: from
UML models to access control infrastructures. ACM Transactions on Software
Engineering and Methodology (TOSEM), Volume 15, Issue 1, January 2006. p. 39—
91.

BRADSHAW, J. M. Software Agents. MIT Press Cambridge, MA, USA, 1997.

CAIRE, G., COULIER, W., GARIJO, F., GOMEZ, J., PAVON, J., LEAL, F.,
CHAINHO, P., KEARNEY, P., STARK, J., EVANS, R. and MASSONET, P. Agent
Oriented Analysis Using Message/UML. In: Proceedings AOSE '01 Revised Papers
and Invited Contributions from the Second International Workshop on Agent-Oriented
Software Engineering Il, Springer-Verlag London, UK, 2002. p. 119-135.

CHOLVY, L. Checking regulation consistency by using SOL-resolution. In:
ICAIL '99 Proceedings of the 7th international conference on Artificial intelligence and
law, ACM New York, NY, USA, 1999.

CLAVEL, M., SILVA, V., BRAGA, C. and EGEA, M. Model-driven security in
practice: an industrial experience. In: ECMDA-FA '08 Proceedings of the 4th
European conference on Model Driven Architecture: Foundations and Applications,
Springer-Verlag Berlin, Heidelberg, 2008. p. 326-337.

COSSENTINO, M. From requirements to code with the PASSI methodology.
In: Agent-Oriented Methodologies, B. Henderson-Sellers and P. Giorgini (Editors),
Idea Group Inc., Hershey, PA, USA, 2005. p. 79-106.

CRANEFIELD, S. Modeling and monitoring social expectations in multi-agent
systems. In: Coordination, Organizations, Institutions, and Norms in Agent Systems
II, Springer-Verlag Berlin, Heidelberg, 2007. p. 308-321.

http://mitpress.mit.edu/catalog/author/default.asp?aid=4184

97

DANC, J. Formal specification of AML. Department of Computer Science
Faculty of Mathematics, Physics and Informatics Comenius University Formal
Specification of AML Master's Thesis, Jan Danc, Advisor: Mgr. Bratislava, 2008.

DEUTCH, M. and GERARD, H. B. A study of normative and informational
social influence upon judgment. Journal of Abnormal and Social Psychology, 51,
1955. p. 629-636.

DIGNUM, V. A model for organizational interaction: based on agents, founded
in logic. PhD dissertation, Universiteit Utrecht, SIKS dissertation series 2004-1, 2004.

DIGNUM, V. The Role of Organization in Agent Systems. In: Handbook of
Research on Multi-Agent Systems: Semantics and Dynamics of Organizational
Models, Author(s)/Editor(s): Virginia Dignum (Utrecht University, The Netherlands),
2009. p. 1-16.

ECLIPSE MODELING FRAMEWORK PROJECT. Eclipse Modeling
Framework Project. http://www.eclipse.org/modeling/emf/, Accessed: Jan. 31, 2011.

EOS. The EOS Component. http://www.bmlsoftware.com/eos/, Accessed:
Jan. 31, 2011.

ETZIONI, O. and WELD, D. S. Intelligent agents on the Internet: Fact, fiction,
and forecast. IEEE Expert: Intelligent Systems and Their Applications archive,
Volume 10, Issue 4, August 1995. p. 44-49.

FERBER, J., STRATULAT, T. and TRANIER, J. Towards an integral approach
of organizations: the MASQ approach in multi-agent systems. In: Handbook of
Research on Multi-Agent Systems: Semantics and Dynamics of Organizational
Models, Author(s)/Editor(s): Virginia Dignum (Utrecht University, The Netherlands),
2009. p. 51-75.

FERRAIOLO, D.F. and KUHN, D.R. Role-Based Access Control. In: 15th
National Computer Security Conference, 1992. p. 554-563.

FIGUEIREDO, K. and SILVA, V. Modeling and Validating Norms in Multi-agent
Systems. In: Workshop of Theses and Dissertations in Software Engineering (WTES)
at Brazilian Conference on Software: Theory and Practice (CBSoft 2010), Salvador,
2010a. p. 49-54.

FIGUEIREDO, K. and SILVA, V. NormML: A Modeling Language to Model
Norms. In: AutoSoft - Autonomous Software Systems (Workshop) at Brazilian
Conference on Software: Theory and Practice (CBSoft 2010), Salvador, 2010b. p.11-
20.

http://csrc.nist.gov/groups/SNS/rbac/documents/ferraiolo-kuhn-92.pdf

98

FIGUEIREDO, K. and SILVA, V. NormML: A Modeling Language to Model
Norms. In: Il International Conference on Agents and Artificial Intelligence (ICAART
2011), Rome, 2011.

FIGUEIREDO, K., SILVA, V. and BRAGA, C. A Modeling Language to Model
Norms. M. De Vos, N. Fornara, J. Pitt and G. Vouros (Edts.) Coordination,
Organizations, Institutions, and Norms in Agent Systems VI, (COIN@AAMAS 2010
post-proceedings), LNAI 6541, Springer-Verlag, 2011.

FOLLESDAL, D., HILPINEN, R. Deontic Logic: An Introduction. In: HILPINEN,
R. (Ed.). Deontic Logic: Introductory and Systematic Readings. Dordrecht: D. Reidel
Publishing Company, 1971. p. 1-38.

FORNARA, N. and COLOMBETTI, M. Specifying and enforcing norms in
artificial institutions. In: Proceedings of the 4th European Workshop on Multi-Agent
Systems Coordination, Organizations, Institutions, and Norms in Agent Systems IlI
Lecture Notes in Computer Science, Volume 4870/2008, 2008. p. 316-329.

FRANKLIN, S. and GRAESSER, A. Is It an Agent or Just a Program? A
Taxonomy for Autonomous Agents. In: Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages, New York, Springer-
Verlag, 1996.

GAERTNER, D., GARCIA-CAMINO, A. and VASCONCELOS, W. Distributed
Norm Management in regulated Multi-Agent Systems. In: Proceedings of the 6th
international joint conference on Autonomous agents and multiagent systems, ACM
New York, NY, USA, 2007.

GARCIA-CAMINO, A., NORIEGA, P. and RODRIGUEZ-AGUILAR, J.
Implementing norms in electronic institutions. In: Proceedings of the fourth
international joint conference on Autonomous agents and multiagent systems, ACM
New York, NY, USA, 2005. p. 667-673.

GARCIA-CAMINO, A., NORIEGA, P. and RODRIGUEZ-AGUILAR, J. A. An
Algorithm for Confict Resolution in Regulated Compound Activities. In: ESAW'06
Proceedings of the 7th international conference on Engineering societies in the
agents world VII, Springer-Verlag Berlin, Heidelberg, 2007.

GARCIA-OJEDA, J., DELOACH, S., ROBBY, O. and VALENZUELA, J. O-
MaSE: a customizable approach to developing multiagent development processes.
In: Michael Luck (eds.), Agent-Oriented Software Engineering VIII: The 8th

http://www.springerlink.com/content/978-3-540-79002-0/
http://www.springerlink.com/content/0302-9743/

99

International Workshop on Agent Oriented Software Engineering, LNCS 4951,
Springer: Berlin, 2008. p. 1-15.

GIORGINI, P., MOURATIDIS, H. and ZANNONE, N. Modelling security and
trust with Secure Tropos. In: Integrating Security and Software Engineering:
Advances and Future Vision, 2006. p. 160-189.

GOVERNATORI, G. and ROTOLO, A. Defeasible logic: agency, intention and
obligation. In: Deontic Logic in Computer Science, 7th Internacional Workshop on
Deontic Logic in Computer Science, LNAI 3065, Springer, 2004. p. 114-128.

HARMON, S. J. and DELOACH, S. A. Trace-based Specification of Law and
Guidance Policies for Multiagent Systems. Engineering Societies in the Agents World
VIII, Springer-Verlag Berlin, Heidelberg, 2008.

HUBNER, J. F., SICHMAN, J. S. and OLIVIER, B. A model for the structural,
functional and deontic specification of organizations in multiagent systems. In:
SBIA '02 Proceedings of the 16th Brazilian Symposium on Artificial Intelligence:
Advances in Artificial Intelligence, Springer-Verlag London, UK, 2002.

INOUE, K. Linear resolution for consequence finding. Journal of Artificial
Intelligence, Volume 56, Issue 2-3, Aug. 1992. p. 301-353.

JUAN, T., PIERCE, A. and STERLING, L. ROADMAP: extending the Gaia
methodology for complex open systems. In: AAMAS '02 Proceedings of the first
international joint conference on Autonomous agents and multiagent systems: part 1,
ACM New York, NY, USA, 2002. p. 3-10.

KAGAL, L. and FININ, T. Modeling Conversation Policies using Permissions
and Obligations. In: van Eijk, R., Huget, M., Dignum, F., eds.: Developments in Agent
Communication Volume 3396 of LNCS., Springer, 2005. p. 123-133.

KOLLINGBAUM, M. and NORMAN, T. J. Informed Deliberation During Norm-
Governed Practical Reasoning. In: Boissier, O and Padget, J and Dignum, V and
Lindemann, G, Eds. Coordination, Organizations, Institutions, and Norms in Multi-
Agent Systems, Springer-Verlag, 2006.

KOLLINGBAUM, M., NORMAN, T. J., PREECE, A. and SLEEMAN, D. Norm
Conflicts and Inconsistencies in Virtual Organisations. In: Coordination,
Organizations, Institutions, and Norms in Agent Systems II, Springer-Verlag, 2007.

KOLLINGBAUM, M., VASCONCELOS, W., GARCIA-CAMINO, A. and

NORMAN, T. J. Conflict Resolution in Norm-regulated Environments via Unification

100

and Constraints. In: Proceedings of the 5th international conference on Declarative
agent languages and technologies V, 2008.

LOMUSCIO, A. and SERGOT, M. A formalization of violation, error recovery,
and enforcement in the bit transmission problem. Journal of Applied Logic, Volume 2,
Number 1, 2004. p. 93-116.

LOPES-CARDOSO, H. and OLIVEIRA E. C. A Context-based Institutional
Normative Environment. In: Coordination, Organizations, Institutions and Norms in
Agent Systems IV, Springer-Verlag Berlin, Heidelberg, 2008.

LOPES-CARDOSO, H. and OLIVEIRA E. C. Monitoring Directed Obligations
with Flexible Deadlines: a Rule-based Approach. In: Declarative Agent Languages
and Technologies VII, 2010. p. 51-67.

LOPEZ y LOPEZ, F. Social power and norms: impact on agent behavior. PhD
thesis, University. of Southampton, Department of Electronics and Computer
Science, 2003.

LOPEZ y LOPEZ, F., LUCK, M. and D’INVERNO, M. Constraining autonomy
through norms. In: AAMAS '02 Proceedings of the first international joint conference
on Autonomous agents and multiagent systems: part 2, ACM New York, NY, USA,
2002. p. 674-681.

MANNA, Z. and PNUELI, A. (1992) The Temporal Logic of Reactive and
Concurrent Systems. The temporal logic of reactive and concurrent systems,
Springer-Verlag New York, Inc. New York, NY, USA, 1992.

MANNA, Z. and PNUELI, A. Temporal Verification of reactive Systems —
Safety. Temporal verification of reactive systems: safety, Springer-Verlag New York,
Inc. New York, NY, USA,1995.

MEYER, J. J. and WIERINGA, R. J. Deontic logic in computer science:
normative system specification. Deontic logic in computer science: normative system
specification, John Wiley and Sons Ltd. Chichester, UK, 1993.

MODGIL, S. and LUCK, M. Argumentation Based Resolution of Conflicts
between Desires and Normative Goals. In: Argumentation in Multi-Agent Systems,
Springer-Verlag Berlin, Heidelberg, 2009.

MOLESINI, A., DENTI, E. and OMICINI, A. RBAC-MAS & SODA:
experimenting RBAC in AOSE engineering societies in the agents world. In:
Engineering Societies in the Agents World IX, Springer-Verlag Berlin, Heidelberg,
20009.

http://www.fe.up.pt/si/publs_pesquisa.FormView?P_ID=24847&P_TIPO=Livro
http://www.fe.up.pt/si/publs_pesquisa.FormView?P_ID=24847&P_TIPO=Livro

101

NOYA, R. C. and LUCENA, C. J. P. The ANote Modeling Language for Agent-
Oriented Specification. In: Software Engineering for Multi-Agent Systems lll, Lecture
Notes in Computer Science, 2005, Volume 3390/2005, 2005. p. 198-212.

OBJECT MANAGEMENT GROUP. Unified Modeling Language.
http://mwww.uml.org/, Accessed: Jan. 31, 2011. 2001a.

OBJECT MANAGEMENT GROUP. OCL Specification. http://www.omg.org/
docs/ptc/03-10-14.pdf, Accessed: Jan. 31, 2011. 2011b.

ODELL, J., PARUNAK, H. and BAUER, B. Extending UML for agents. In:
Proceedings of of the Agent-Oriented Information Systems, Workshop at the 17th
National conference on Atrtificial Intelligence, 2000. p. 3—-17.

OMG AGENT PLATFORM SPECIAL INTEREST GROUP. Agent Technology
Glossary. http://www.objs.com/agent/agent-glossary-v02.html, Accessed: Jan. 31,
2011.

OMICINI, A. SODA: societies and infrastructures in the analysis and design of
agent-based systems. In: First international workshop, AOSE 2000 on Agent-oriented
software engineering, Springer-Verlag New York, Inc. Secaucus, NJ, USA, 2001.

OREN, N., LUCK, M., MILES, S. and NORMAN, T. J. An argumentation
inspired heuristic for resolving normative conflict. In: Proceedings of the International
Workshop on Coordination, Organisations, Institutions and Norms in Agent Systems
(COIN@AAMAS 2008), Estoril, Portugal, 2008. p. 41-56.

PADGHAM, L. and WINIKOFF, M. Developing intelligent agent systems: a
practical guide. John Wiley and Sons, 2004. 225 pages.

PRABHUPADA, A. C. B. S. Bhagavadgita As It Is. Ed. Bhaktivedanta Book
Trust, 1968.

RAO, A. S. and GEORGEFF, M. P. BDI agents: From theory to practice. In:
Proceedings of the First Intl. Conference on Multiagent Systems ICMAS95, 1995.

SECTRO. SecTro Tool, Secure Tropos. http://sectro.securetropos.org/,
Accessed: Jan. 31, 2011.

SILVA, V. From the specification to the implementation of norms: an automatic
approach to generate rules from norms to govern the behaviour of agents. In:
Autonomous Agents and Multi-Agent Systems, Volume 17, Issue 1, August 2008. p.
113-155.

SILVA, V., BRAGA, C. and FFIGUEIREDO, K. A Modeling Language to Model
Norms. In: Workshop on Coordination, Organization, Institutions and Norms in agent

http://www.objs.com/agent/agent-glossary-v02.html
http://sectro.securetropos.org/

102

systems at International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS10), Toronto, 2010. p. 25-32.

SILVA, V., CHOREN R. and LUCENA, C. MAS-ML: a multi-agent system
modelling language. In: International Journal of Agent-Oriented Software
Engineering, Special Issue on Modeling Languages for Agent Systems, Inderscience
Publishers, vol.2, no.4, 2008. p. 382-421.

SILVA, V., DURAN, F., GUEDES, J. and LUCENA, C. Governing Multi-Agent
Systems. In: Journal of Brazilian Computer Society, Special Issue in Software
Engineering for Multi-Agent Systems, volume 13, number 2, 2007.

SILVA, V., GARCIA, A.,, BRANDAO, A., CHAVEZ, C., LUCENA, C.,
ALENCAR, P. Taming Agents and Objects in Software Engineering. In: Garcia, A.;
Lucena, C.; Zamboneli, F.; Omicini, A; Castro, J. (Eds.), Software Engineering for
Large-Scale Multi-Agent Systems, Springer-Verlag, LNCS 2603, 2003. p. 1-26.

THE ECLIPSE FOUNDATION. Eclipse. http://www.eclipse.org/, Accessed:
Jan. 31, 2011.

VASCONCELOS, W., KOLLINGBAUM, M. and NORMAN, T. Resolving
conflict and inconsistency in norm-regulated virtual organizations. In: AAMAS '07
Proceedings of the 6th international joint conference on Autonomous agents and
multiagent systems, ACM New York, NY, USA, 2007.

VIGANO, F. and COLOMBETTI, M. Model checking norms and sanctions in
institutions. In: COIN'O7 Proceedings of the 2007 international conference on
Coordination, organizations, institutions, and norms in agent systems lIll, Springer-
Verlag Berlin, Heidelberg, 2008.

VON WRIGHT, G.H. Deontic Logic. Mind, volume 60, 1951. 1-5.

W3SCHOOLS. XSLT Tutorial. http://www.w3schools.com/xsl/, Accessed: Jan.
31, 2011. 2011a.

W3SCHOOLS. XPath Tutorial. http://www.w3schools.com/xpath/ default.asp
xpath tutorial 2011, Accessed: Jan. 31, 2011. 2011b.

WAGNER, G. The Agent-Object-Relationship meta-model: towards a unified
view of state and behavior. Information Systems, Volume 28 Issue 5, July 2003. p.
475-504.

WOOLDRIDGE, M. Agent-based software engineering. IEE Proceedings —
Software, 144(1), 1997. p. 26-37.

http://www.informatik.uni-trier.de/~ley/db/journals/iee/iee-s144.html#Wooldridge97
http://www.informatik.uni-trier.de/~ley/db/journals/iee/iee-s144.html#Wooldridge97

103

ZAMBONELLI, F., JENNINGS, N. R. and WOOLDRIDGE, M. J. Developing
multiagent systems: the Gaia methodology. In: ACM Transactions on Software
Engineering and Methodology (TOSEM), Volume 12, Issue 3, July 2003. p. 417-470.

ZAMBONELLI, F., JENNINGS, N. R. and WOOLDRIDGE, M. J. Organisational
Rules as an Abstraction for the Analysis and Design of Multi-Agent Systems. In:
International Journal of Software Engineering and Knowledge Engineering, Volume
11, Number 3, 2001. p. 303-328.

APPENDIX A: The NormML extension of SecureUML

NormML is a non-conservative extension of the SecureUML language, and, for

this reason, not all elements of SecureUML were maintained in the extension. In the

following we present the main differences between the two modeling languages.

The metamodel extension

Figure A.1 shows the elements from the SecureUML metamodel highlighting

the ones which were preserved in the NormML metamodel. The gray colored

metaclasses and the relationships illustrated by a continuous line are still part of the

NormML metamodel. The white colored classes and the relationships illustrated by a

traced line were excluded during the NormML extension.

The User metaclass and all the attributes of the metaclasses of SecureUML

were removed, and the Permission and the AutorizationConstraint metaclasses of

SecureUML were replaced by the Norm and NormConstraint metaclasses of

NormML. Because of that some relationships were also modified:

The ConstraintAssigment relationship between the Permission and the
AutorizationConstraint metaclasses defined in SecureUML was replaced by
the NormConstraintAssignment relationship between the Norm and

NormConstraint metaclasses in NormML;

The PermissionAssigment relationship between the Permission and the Role
metaclasses defined in SecureUML was replaced by the
NormAssignmentRole relationship between the Norm and Role metaclasses in
NormML; and

The UserAssignment relationship between the Role and the User metaclasses
defined in SecureUML was replaced by the AgentPlayingRole relationship

between the Agent and Role metaclasses and the

105

SubOrganizationPlayingRole relationship between the Organization and Role

metaclasses in NormML.

|

UONEI0SSE
30SSYPUTI0SSE
pu3a0sse

[4

PUFUONEIN0SSE e 6
PUIUOLEIN0SSYANNAMAIDS
Agus - Agus

BN

*

aingipe
ainguinu3
Anue

{
Bl

I

AInosal
BLILDISSYalIN0SaY
uonoe

Hpayaieyp

UoRIyaNsodLIQ

O {iEwunissyuoy

AR}
$88308
paufiissys|

*

fuyg ; afienfiug|
fuls - dpog

uielsuoQuopezuoLyny

)

__,:D
Agiuensud)s
wawubissyiuienshion
esEu0)
L

1

¥
\Ie8|oog | JInejap

0I5B | JUBLIUBISSWUOISS|ULE

o]
|

sap :_._ﬂ
Ewecu_mﬂﬁm:

=

oissiuedsey. - - - -

£5320y8Al
}

AyatesaiHaloy

Figure A.1 Conserved elements of the SecureUML metamodel

106

The well-formedness rules extension

As a non-conservative extension of the SecureUML, the invariants “Default
role” and “Default permission” of the SecureUML language (Basin et al., 2006) were
discarded in the NormML language since they cannot be applied in the metaclasses
and relationships of the NormML metamodel.

The “Role hierarchy” invariant that guarantees an acyclic role hierarchy was
maintained without changes (see WRFO07 in Appendix C), and the “Resource action
association” invariants were extended to attend the new types of resources and
actions of the NormML metamodel (see WFR16 to WFR48 in Appendix C and Table
3.1 in Chapter 3). For instance, an AtomicCreate action must be related to an Entity
in SecureUML. In NormML, an AtomicCreate action must be related to an Entity, an
Agent, a Role, a Plan, a Belief, a Protocol, an Organization or an Environment

resource as described below.

context AtomicCreate

inv atomicCreateTargetsCorrectResource:

if((self.resource.ocllsTypeOf(Entity) or (self.resource.oclisTypeOf(Agent) or
(self.resource.ocllsTypeOf(Role) or (self.resource.oclisTypeOf(Plan) or
(self.resource.oclisTypeOf(Belief) or (self.resource.oclisTypeOf(Protocol) or
(self.resource.ocllsTypeOf(Organization) or (self.resource.oclisTypeOf(Environment))

then(true)else(false)endif

The “Action hierarchy” invariants were also extended to attend the new types
of composite and atomic actions of the NormML metamodel (see Table B.1 in
Appendix B). For instance, the following invariant was added to guarantee that the
new composite action MessageFullAccess of NormML metamodel are composed of

the correct subordinated actions (AtomicSend and AtomicReceive).

context MessageFull Access
inv containsSubactions:
self.subordinatedactions = self.resource.action—>select(ala.ocllsTypeOf(AtomicSend))

—>union(self.resource.action—>select(ala.ocllsTypeOf(AtomicReceive)))

APPENDIX B: NormML dialect action hierarchy

In the NormML metamodel each resource kind has a set of actions that can be
used to control the access to the resource. Those actions can be atomic or
composite actions and they are connected by using hierarchies. The composite
actions are composed by other atomic or composite actions, according to the
relations between the resources. In Table B.1 a mapping between the composite

actions and its subordinate actions is described.

Composite action type Subordinated actions

EntityRead read for all attributes and association ends of the entity, and

execute for all side-effect free methods of the entity.

EntityUpdate update for all attributes of the entity,
update for all association ends of the entity, and

execute for all non-side-effect free methods of the entity

EntityFullAccess create, read, update, and delete of the entity.

AttributeFullAccess read, update and achieve of the attribute.

AssociationEndFullAccess | read and update of the association end.

EnvironmentUpdate full access for all organizations of the environment, and

full access for all agents of the environment.

EnvironmentFullAccess | create, delete, enter, leave and update of the environment.

OrganizationUpdate full access for all sub-organizations of the organization, and

full access for all roles of the organization.

OrganizationFullAccess | create, delete, enter, leave and update of the organization.

AgentUpdate full access for all beliefs of the agent,
full access for all goals of the agent,
full access for all agent actions of the agent, and

full access for all plans of the agent.

AgentFullAccess create, delete and update of the agent.
PlanExecute execute for all agent actions of the plan.
PlanFullAccess create, delete, update and execute of the plan.
BeliefFullAccess create, delete and update of the belief.
GoalFullAccess achieve, commit and cancel of the goal.
RoleUpdate full access for all protocols of the role,

full access for all belief of the role,
full access for all goals of the role, and

full access for all agent actions of the role.

Composite action type

Subordinated actions

RoleFullAccess

create, delete, commit, cancel and update of the role.

MessageFullAccess

receive and send of the message.

ProtocolSend

send for all messages of the protocol.

ProtocolReceive

receive for all messages of the protocol.

ProtocolFullAccess

create, delete, send and receive of the protocol.

Table B.1 NormML dialect action hierarchy

108

APPENDIX C: The well-formedness rules of NormML

WFR1: A norm must be in the context of an Organization or an Environment
and cannot be defined in the scope of both at the same time.
The context of a norm determines the scope where the norm is applied, thus,
a norm can have only one context that can be an environment or an organization
(see Figure 3.10).

WFR2: An Agent can only play a Role in the Organization that owns such Role,
I.e., that has defined such Role.
To play a role, an agent must belong to the organization that owns such role
by the relationship AgentOfOrganization (see Figure 3.10).

WFR3: Only Suborganizations play Roles.
Organizations must belong to another organization to play its roles, thus only
sub-organizations can play roles in their super-organizations.

WFR4: A SubOrganization can only play a Role in the Organization that owns
such Role, i.e., that has defined such Role.
To play a role, a sub-organization must belong to a super-organization that
owns such role by the relationship OrganizationComposition (see Figures 3.2 and
3.9).

WFR5: A SubOrganization must inhabit the same Environment of its super-
organization.
If an organization is a sub-organization then it cannot inhabit an environment
different of its super-organization’s environment, because the sub-organization is part
of the super-organization.

WFR6: A norm must restrict the behavior of an Agent, a Role, an Agent playing

a Role, an Organization, a SubOrganization playing a Role or an Environment.

A norm must restrict the behavior of an entities, and, according to the NormML
metamodel, these are the possible involved entities of the norm (see Section 3.2.2).

WFR7: The subRole of a RoleHierarchy cannot be the superRole of the same
RoleHierarchy.
This rule is necessary to avoid cycles in the role hierarchy.

WFRS8: The norms applied to an Agent restrict the actions of such Agent.
A norm must restrict the behavior of the entity involved in the norm, so a norm
cannot regulate the access of an agent action that is not one of the actions of the
agent itself.

WFR9: The norms applied to a Role restrict the actions of the Agents playing
such Role.
A norm must restrict the behavior of the entity involved in the norm, so the
behavior of the agents that play the role will be regulated by the norms applied to the
role they are playing. .

110

WFR10: The norms applied to an Agent playing a Role restrict the actions
defined by the Agent when playing such Role.
A norm must restrict the behavior of the entity involved in the norm, so the
behavior of the agent will only be regulated by such norm when it is playing such role.
Note that it will occur to the agents identified in the norm.

WFR11: The norms applied to an Organization restrict the actions of all Agents
that play Roles in such Organization and its SubOrganizations.
A norm must restrict the behavior of the entity involved in the norm, so at least
one agent that plays roles in such organization or its sub-organizations must have the
action regulated by the norm.

WFR12: The norms applied to an Environment restrict the actions of all the
Agents of such Environment.
A norm must restrict the behavior of the entity involved in the norm, so at least
one agent that inhabits such environment must have the action regulated by the
norm.

WFR13: The norms applied to an Environment must be defined in the context of
such Environment.

If a norm regulates the behavior of the agents that inhabits an environment, it
cannot be defined in the context of an organization or of another environment
because it will be regulating the behavior of entities in a reduced scope or out of its
appropriated scope.

WFR14: The norms applied to an Organization must be defined in the context of
such Organization, in the context of its organization hierarchy, or in the context
of the Environment inhabited by the Organization.

If a norm regulates the behavior of the agents that play roles in an
organization, it cannot be defined in the context of another organization out of its
organization hierarchy or in the context of an environment different of the
organization’s environment because it will be regulating the behavior of entities of out
of its scope.

WFR15: The subOrganization of an OrganizationComposition cannot be the
superOrganization of the same OrganizationComposition.
This rule is necessary to avoid cycles in the organization composition.

WFR16: An AtomicCreate action must be related to an Entity, an Agent, a Role,
a Plan, a Belief, a Protocol, an Organization or an Environment resource.

WFR17: An AtomicUpdate action must be related to an Attribute, an
AssociationEnd, a Plan or a Belief resource.

WFR18: An AtomicDelete action must be related to an Entity, an Agent, a Role,
a Plan, a Belief, a Protocol, an Organization or an Environment resource.

WFR19: An AtomicRead action must be related to an Attribute or an
AssociationEnd resource.

WFR20: An AtomicExecute action must be related to a Method or an
AgentAction resource.

WFR21: An AtomicReceive action must be related to a Message resource.

111

WFR22: An AtomicSend action must be related to a Message resource.

WFR23: An AtomicAchieve action must be related to an Attribute or a Goal
resource.

WFR24: An AtomicEnter action must be related to an Organization or an
Environment resource.

WFR25: An AtomicLeave action must be related to an Organization or an
Environment resource.

WFR26: An AtomicCommit action must be related to a Role or a Goal resource.

WFR27: An AtomicCancel action must be related to a Role or a Goal resource.

WFR28: An EntityRead action must be related to an Entity resource.

WFR29: An EntityUpdate action must be related to an Entity resource.

WFR30: An EntityFullAccess action must be related to an Entity resource.

WFR31: An AttributeFullAccess action must be related to an Attribute resource.

WFR32: An AssociationEndFullAccess action must be related to an
AssociationEnd resource.

WFR33: A MessageFullAccess action must be related to a Message resource.

WFR34: An AgentUpdate action must be related to an Agent resource.

WFR35: An AgentFullAccess action must be related to an Agent resource.

WFR36: A RoleUpdate action must be related to a Role resource.

WFR37: A RoleFullAccess action must be related to a Role resource.

WFR38: An OrganizationUpdate action must be related to an Organization
resource.

WFR39: An OrganizationFullAccess action must be related to an Organization
resource.

WFR40: An EnvironmentUpdate action must be related to an Environment
resource.

WFR41: An EnvironmentFullAccess action must be related to an Environment
resource.

WFR42: A PlanExecute action must be related to a Plan resource.

WFRA43: A PlanFullAccess action must be related to a Plan resource.

WFR44: A ProtocolReceive action must be related to a Protocol resource.

WFRA45: A ProtocolSend action must be related to a Protocol resource.

WFRA46: A ProtocolFullAccess action must be related to a Protocol resource.

WFRA47: A BeliefFullAccess action must be related to a Belief resource.

WFRA48: A GoalFullAccess action must be related to a Goal resource.
The rules WFR16 to WFR28 match the actions to their correct resources (see

Section 3.2.3, Table 3.1 and Appendix A for more details).

WFR49: The subAgentAction of an AgentActionHierarchy cannot be the
superAgentAction of the same AgentActionHierarchy.
This rule is necessary to avoid cycles in the agent action hierarchy.

WFR50: The subordinateAgentAction of an AgentActionComposition cannot be
the compositeAgentAction of the same AgentActionComposition.
This rule is necessary to avoid cycles in the agent action composition.

WFR51: A Message must belong to a Protocol as MessageReceivedByProtocol
or MessageSentByProtocol.
A message cannot be apart from an interaction protocol (see Figure 3.6).

112

WFR52: A Goal is the goal of an Agent or a Role.
A goal must belong to an entity. Such entity can be an agent identified by the
GoalOfAgent relationship or a role identified by the GoalOfRole relationship (see
Figure 3.6).

WFR53: A Belief is the belief of an Agent or a Role.
A belief must belong to an entity. Such entity can be an agent identified by the
BeliefOfAgent relationship or a role identified by the BeliefOfRole relationship (see
Figure 3.6).

WFR54: An AgentAction is the action of an Agent or an action of a Role being
played.
A goal must belong to an entity. Such entity can be an agent identified by the
ActionOfAgent relationship or a role identified by the ActionOfRoleBeingPlayed
relationship (see Figure 3.6).

WFR55: A norm cannot have more than one Before, After, Between and If
constraints.
A norm can only have one norm constraint of each type to avoid duplications.
In case of more than one clause need to be described to a norm constraint type, it
can be associated with the same norm constraint.

WFR56: A Before or an After constraint must be related to one Date or Action.
The before and after of a norm are time constraints, thus they need to be
associated with a date or with the execution of an action (see Figure 3.7).

WFR57: The before and the after of a Between constraint must be related to one
Date or Action.
The between of a norm is a time constraint, thus it need to be associated with
two dates or with the execution of two actions in order to define a time interval (see
Figure 3.7).

WFR58: The Action of an entity in the before of a Between constraint cannot be
in the after of the same Between to the same entity in the same context, and
vice-versa.

If the action in the before of the between is equal to the action in the after of
the same between to the same entity in the same context, then the between does not
constitute a valid time interval.

WFR59: The Date in the before of a Between constraint cannot be equal or
superior to the Date in the after of the same Between.

If the date in the before of the between is equal or superior to the date in the

after of the same between, then the between does not constitute a valid time interval.

WFRG60: A If constraint must be related to one Date or two Operands.
The if constraint is a time constraint and also a conditional constraint, thus it
needs to be associated with a date or with a clause with values (see Section 3.2.4).

WFR61: If a Norm has an Attribute related to its If constraint, then the entity of
the norm must have permission to read this Attribute.

113

If the entity of the norm does not have permission to read the attribute, it will
not know when to fulfill the norm.

WFR62: A Norm that regulates the execution of a given Action cannot be
conditioned by the execution of the same Action by the same entity.
This rule is necessary to avoid cycles in the norm constitution.

WFR63: The value and the operator attributes of a Value and a If cannot be null.
This rule is necessary to make mandatory the attributes above, thus the norm
can be read.

WFR64: A Norm described in a Sanction cannot be the same Norm that has the
Sanction.
This rule is necessary to avoid cycles in the norm’s sanctions constitution.

WFR65: A Reward to an entity cannot apply a NormProhibition or a
NormObligation to the same entity.
A reward must be a prize to the entity that fulfilled the norm, thus it does not
make sense to apply a prohibition or an obligation to the same entity.

WFR66: A Punishment to an entity cannot apply a NormPermission to the same
entity.
A punishment must be a penalty to the entity that violated the norm, thus it
does not make sense to apply a permission to the same entity.

APPENDIX D: Semantically opposite actions

In the NormML metamodel each resource kind has a set of actions that can be
used to restrict the access to the resource. Some of those actions are semantically
opposite actions. In Table E.1 a mapping between semantically opposite actions and

the resources they control is described.

Semantically opposite actions Resources
AtomicCreate and AtomicDelete Entity, Agent, Role, Plan, Belief, Protocol, Organization and
Environment
AtomicEnter and AtomicLeave Organization and Environment
AtomicCommit and Role and Goal
AtomicCancel

AtomicSend and AtomicReceive Message

ProtocolSend and Protocol

ProtocolReceive

Table D.1 NormML semantically opposite actions

APPENDIX E: List of the graphical model stereotypes of the NormML concrete

syntax

In Table E.1 a mapping between graphical model stereotypes and what they

represent is described.

Stereotype

Represents

<<Environment>>

An Environment
element

<<Organization>>

An Organization
element

<<Agent>> An Agent element
<<Role>> A Role element
<<Entity>> An Entity element
<<Norm>> A Norm element

<<Permission>>, <<Prohibition>> and <<Obligation>>

The type (or deontic
concept) of a Norm
element

<<Reward>> and <<Punishment>>

The sanction type of
a Norm element

<<agentAction>>, <<agentActionAction>>, <<beliefAction>>, <<goalAction>>,
<<planAction>>, <<roleAction>>, <<messageAction>>, <<protocolAction>>,
<<environmentAction>>, <<organizationAction>>, <<entityAction>>,
<<attributeAction>>, <<methodAction>> and <<associationEndAction>>

The resource type
being accessed by a
Norm element

<<beforeAction>>, <<afterAction>>, <<betweenBeforeAction>> and
<<afterBetweenAction>>

An action constraint
attribute of a Norm
element

<<conditionalAttribute>>, <<conditionalGoal>> and <<conditionalBelief>>

A conditional
constraint attribute
of a Norm element

<<before>>, <<after>>, <<between>> and <<if>>

A date constraint
attribute of a Norm
element

Table E.1 NormML graphical model stereotypes

APPENDIX F: From NormML concrete models to abstract models

= For each Environment env of M, insertin M an object env of the class
Environment.

= For each Organization org of M, insertin M an object org of the class

Organization.
» For each OrganizationinhabitEnvironment relationship of M between env and

org, insert in M an OrganizationinhabitEnvironment link between envand org.

» For each composition relationship between two organizations org *
(suborganization) and org 2 of M, insert in M an OrganizationComposition link
between org ! (suborganization) and org 2.

» For each Entity e of M, insert in M an object e of the class Entity and, for each
Attribute a of an Entity e of M, insert in M (i) an object a of the class Attribute
and (ii) an EntityAttribute link between a and e. Also, for each Method m of an
Entity e of M, insert in M (i) an object m of the class Method and (ii) an
EntityMethod link between m and e.

= For each Association relationship ass of M between et and €?, insert in M (i) an
object assof the class Association; (ii) two objects ass—end * and ass—end 2
of the class AssociationEnd; (iii) an AssocEndAssoc link between ass—end *
and ass; (iv) an AssocEndAssoc link between ass—end 2 and ass; (v) an
EntityAssocEnd link between ass—end * and e; and (vi) an EntityAssocEnd
link between ass—end 2 and e-.

= For each Agent ag of M, insert in M an object ag of the class Agent.

» For each AgentOfOrganization relationship of M between org and ag, insert in

M an AgentOfOrganization link between org and ag .
» For each AgentinhabitEnvironment relationship of M between env and ag,
insertin M an AgentinhabitEnvironment link between envand ag .

» For each Belief b of an Agent ag of M, insert in M (i) an object b of the class
Belief and (ii) a BeliefOfAgent link between b and ag |

» For each Goal g of an Agent ag of M, insert in M (i) an object g of the class
Goal and (ii) a GoalOfAgent link between g and ag |

» For each AgentAction ag-act of an Agent ag of M, insert in M (i) an object
ag —act of the class AgentAction and (ii) an ActionOfAgent link between

ag—act and ag_

»= For each Plan p of an Agent ag of M, insert in M (i) an object p of the class
Plan; (i) a PlanOfAgent link between p and ag ; (iii) a ActionOfPlan link
between p and ag —act for each agent action ag-act of p; and (iv) a
GoalOfPlan link between p and g for each goal g of p.

117

For each Role r of M, insertin M an object r of the class Role.

For each RoleOfOrganization relationship of M between org and r, insert in M
a RoleOfOrganization link between org and .

For each inheritance relationship between two roles r ! (subrole) and r 2 of M,
insert in M a RoleHierarchy link between rt (subrole) and r 2.

For each Protocol pro of a Role r of M, insert in M (i) an object pro of the
class Protocol; (i) a ProtocolOfRole link between pro and r; (iif) an object
mess of the class Message and a MessageSentByProtocol link between pro
and mess for each “sent message” mess of pro; and (iv) an object mess of the
class Message and a MessageReceivedByProtocol link between pro and
mess for each “received message” mess of pro.

For each Belief b of a Role r of M, insertin M (i) an object b of the class
Belief and (ii) a BeliefOfRole link between b and F.

For each Goal g of a Role r of M, insert in M (i) an object g of the class Goal
and (i) a GoalOfRole link between g and r

For each AgentAction ag-act of a Role r of M, insert in M (i) an object
ag —act of the class AgentAction and (ii) an ActionOfRoleBeingPlayed link

between ag—act and r_

For each AgentPlayingRole relationship of M between ag and r, insert in M an
AgentPlayingRole link between ag and r.

For each SubOrgPlayingRole relationship of M between org and r, insert in M
an SubOrgPlayingRole link between org and r .

For each Norm n of M that states a permission, insert in M an object n of the
class NormPermission.

For each Norm n of M that states a prohibition, insert in M an object n of the
class NormProhibition.

For each Norm n of M that states an obligation, insert in M an object n of the
class NormObligation.
For each NormInContextOrganization relationship of M between org and n,

insertin M a NormInContextOrganization link between org and n .
For each NormInContextEnvironment relationship of M between env and n,

insert in M a NormInContextEnvironment link between env and n .
For each NormAssignmentAgent relationship of M between ag and n, insert in

M a NormAssignmentAgent link between ag and n.
For each NormAssignmentRole relationship of M between r and n, insert in M

a NormAssignmentRole link between randn.
For each NormAssignmentOrganization relationship of M between org and n,

insertin M a NormAssignmentRole link between org and n.
For each NormAssignmentEnvironment relationship of M between env and n,
insertin M a NormAssignmentRole link between env and n .

118

For each NormAssignmentAgentPlayingRole relationship of M between r, ag
and n, insertin M a NormAssignmentAgentPlayingRole link between F, ag
and n.

For each NormAssignmentSubOrgPlayingRole relationship of M between r,
org and n, insert in M a NormAssignmentSubOrgPlayingRole link between F,
org and n.

For each resource action attribute res of Norm n of M, must be inserted in M
(i) an object act of the class Action related to the action type of res; (ii) an
ActionAssignmentNorm link between act and n ; and (iii) a

RessourceAssignement link between act and the object of the type defined in
the stereotype of res which name is equal to res.
E.g.: For each resource action attribute res of Norm n of M that is an

“attributeAction” and has the action type “update”, insertin M (i) an
object act of the class AtomicUpdate; (ii) an ActionAssignmentNorm
link between act and n; and (i) a RessourceAssignement link

between act and the object a which name is equal to res.
For each action constraint attribute acon of Norm n of M that has a res, must be

inserted in M (i) an object act of the class Action related to the action type of
res; (ii) a norm constraint object of the type defined in the stereotype of acon;

(iii) the correct link between act and the norm constraint object: (iv) a
NormConstraintAssignment link between n and the norm constraint object:

and (v) a RessourceAssignement link between act and the object of the type
defined in the stereotype of res which name is equal to res.
E.g.: For each action constraint attribute acon of Norm n of M that is a
“beforeAction” and has a res that is a “messageAction” and has the

action type “receive”, insert in M (i) an object act of the class
AtomicReceive; (i) an object bef of the class Before; (iii) a

BeforeAction link between act and the object bef : (iv) a
NormConstraintAssignment link between n and bef - and (v) a

RessourceAssignement link between act and the mess object which
name is equal to acon.
For each conditional constraint attribute ccon of Norm n of M, must be inserted

in M (i) an object v of the class Value if ccon has a value v defined as its
initial value; (ii) an object if of the class If ; (i) a NormConstraintAssignment
link between if and the object n : (iv) a ConditionalOperand link between n

,the object of the type defined in the stereotype of ccon which name is equal to
ccon and the object which name is equal to the initial value of ccon; and (v) the

value of the type of ccon as the value of the operator attribute of the object if .

E.g.: For each conditional constraint attribute ccon of Norm n of M that is
a “conditionalAttribute” and has a value v defined as its initial value,

insertin M (i) an object v of the class Value; (i) an object if of the
class If; (i) a NormConstraintAssignment link between if and ﬁ; (iv) a

119

ConditionalOperand link between n v and the object awhich name is
equal to ccon; and (v) the value of the type of ccon as the value of the
operator attribute of the object if .
For each date constraint attribute dcon of Norm n of M, must be inserted in M
(i) a norm constraint object of the type defined in the stereotype of dcon; (ii) an
object d of the class Date; (iii) the correct link between d and the norm
constraint object: gand (iv) a NormConstraintAssignment link between n and

the norm constraint object.
E.g.: For each date constraint attribute dcon of Norm n of M that is a

“before”, insert in M (i) a bef object of the class Before; (i) an object d
of the class Date; (iii) a BeforeDate link between d and bef : and (iv) a
NormConstraintAssignment link between n and bef .

For each Norm nt of M that states a reward, insert in M (i) a new object rew of
the class Reward; (i) a SanctionAppliesNorm link between nt and rew; and

(iii) a SanctionOfNorm link between n2and rew where n2 comes from the
SanctionOfNorm relationship of M between nt and n2.

For each Norm n! of M that states a punishment, insert in M (i) a new object
punof the class Punishment; (i) a SanctionAppliesNorm link between n t and
pun; and (iii) a SanctionOfNorm link between n2and punwhere n2 comes
from the SanctionOfNorm relationship of M between n* and n2.

APPENDIX G: Local conference management system abstract models

In the following we illustrate all the NormML abstract models of the norms of

the local conference management system. This example application was presented

before in Chapter 5 and modeled in Chapter 6.

PaOAUILIOU
ULONJUBLIURISSYUOGIY paufissysi| UDISSIUUBGUWION - TN LoleZIuefIOpauoUULION
WHONSEH8|0I
B|0HuBUIUAISSYULON
858908 J0leyagaloMaMsal
Juauufissyaanosay uopae £ T
ANIaxIoII0N JadegNuIgngamaare e pryrrrey WU I RN T DaRE RAEAONOUOIY 3|04 Jamalnay LONEEBIOI0a0d
858008 uonae 8104ans
M2IBIEIHA0H
ETRTED I
ULONUBUIURISSYUONaY A|0MUaLIUAISSYLLION 8o uonezIuefII0a|0y
pauBissysi| UOMAMOAUHON - IN [yyonsenalol Joueyagaapmsa| 9108 - BZUENO o
PaOAUIULOU
uoneziuefio| uoneziuefio |Melu0geuoRezIuEfI0

UoeZIUERIONEUODUIUHON

pau0 oLz

UONEZIUERIQ . aoualaun)|Ean]

uonezuedio

JUBUILOIAUTGEYUOnEZIUERI0

JuaUILoIIAUA

TUBUIUBIIS ; AB1005aIUaIBIu0Y)

Figure G.1 N1 and N2

121

CanferenceSaciety : Environment

environment

OrganizationinhabitEnvironment

organization

LocalConference : Organization

organizationalContext | organization |organization

role

Organizer : Role
RoleOfOrganization

superRole

RoleHigrarchy

subRole

RoleOfOrganization | conferenceChair: Role |/2/° action| extendSubmissionDeadline : Agenthction
rale ActionOfRoleBeingPlayed

restrictRoleBehavior resource

NormAssighmentRole)
ResourceAssignment

roleHasNorm action

N3 : NarmPermission ActionAssignmentorm executeExtendSubmissionDeadline : AtamicExecute
norminContext isAssigned access
isConstrainedBy

NarminCantextOrganization

NormConstraintAssighment

constraint

ifeedMarePapers : If
operator = lessThan

conditionalConstraint

Cond?%Operand
valueOMumberOfPapers : Value TiEerOTR At o Arlbus atiribute entity Conference. Enf
value = 50 secondOperand W firstOperand EntityAttribute

Figure G.2 N3

122

uonauessey

paubissys|

uauysiung D UoREIOIAFN

wuopsalddyuplaues

|8IUEDIILUONY - 8|0H|3IUED

558008
INUEDI

paubissys|

uonae

RISSYUONY

EEZum__an_ UolenlqouIoN - GN

ERUBTITANUE]
fnua angupe

BINGUY . J0QINE

ULONIQUONIURS

JUIBASUOD[BUONIPUOD

pueladolsiy

puesadQEuonpuos

o]|enha =.iojelado

1 - dadeduamol

JUIBASUD)

JUBLWIUAIS SHUIASUD D ULION

auflssys|

Agpauielsuogs

ULONIUBWIUBISSYUO NI

pueladopuolas

HAUODUULLIOU

181189 ; aWel

8ll3q

a|odioielzg

BNJaXTIII0y | 1B0EJMaIneganaa%e8 [ssadde paublsoys| UOMAOIJUION PN
uone WUONSEH3|04
JUBWUAISSYaIN0Say
3|0MUBLIUAISSYULION
32In0sal 101ABY3g3|041911S31 ajol
uoipe alod

Uonayuany - 1ade gmalal

JuaLIUAISSYaN0Say

pake|dAulagaloiouonay

WONSEHB|0M

XEIU0DU|LLIOU

3|0MIUBIUAISSYUUON

uoeziuefIQKau0 JUILION

ajoy4adns

UoNEZILEBIOKEIUODU|UION

3104 - lamalay

3100 yopeziueflQIO8|0Y

uoneziuefig08|oy

8104 - JaZUERI0 [31g;

uoneziuefiio| uoneziuefio | a0 eUOEZIUERIO

HaU0D|euoEZIUERIO

UONEZIUERID ; 83UBIaIU0) Ea0]

uoljeziueflo

JuBLWIUOIAUSNGEYUUoEZIUERIO

JUBLILOIAUS

JUBWILOIAUT alo05a0ualajuos)

Figure G.3 N4 and N5

123

RULIANUE] R

a_wcm angupe aNguUEy - 10yine ﬁcw_mﬂoﬂw‘_c pueladopuolas 181|8g : aweu
u:mhmno_my 1puad

JUIBSUOD|EUOHIPUDI

0] |enba = Jojesado

JUBLIUBISSYUIENSUODULION UIBASUOD | T IaMalAa g SHadedIolouinyll
WIENSUOD
WUONQUORIUES
uojae 8|04i0l8l|ag
JUBLUAISSYIU|EASUODUUON
aj8[aaIuoyy - 18dedpieasip paubissys|
558228 Agpauielsuo)si
UUONUBUWIUBISSYUONIT HauoHu[LIoU
aN38x30IWI0Ny - Jadedmanagamisxa [ssaoe paufissys!| YOHAIYOIJUUON N UONEZIUERIOM@IUOOUILION
uopae WONSEH3|04 |

JuBLUAISSYaIn0say E
310 5UBLIUAISSYLUD
LLONUBWIUAIS SYUDY =t 1SSYUUON

uolpuESSEY 3aInosal loineyaga|oiamsal 3|0l
uonae 8|04
JUaWyYsIung : UOHEDIAFN UoIyUahy | 1ade gmalaal palelghUIaaaI0MIOU0nIY 310y T 1BMBNAY (3101 Lopezinebioloalon
paublssys a|04ans
loNsalddyuoniues AyatergiHaloy
paubissys! Joppandde ajodiadns
a|0HIuBLIUAISSYULION AyatesaiHaloy uoneziuefiQioaloy
fgpauiensuogsy| YOHERIGOUNON BN yjonseqaiol Jomeyagajompmsal| 2198 - IBUDBIUBIBNOD 75 0uans goiadns | 2108 - 482IUERID 5]

ajuoJuU|LIou ajod

uoneziueflQ0a|oy

uoneziuefio| uogeziuefio | e euonezZiuERI0
UoNeZIUBRTT

uoReZIuEBIQKaIUODUILLION

UDNEZIUERID © 80UBlajuns|edn

a0 |eunneziuenlo

uopeziuefio
aUoIAUINGEYUIUOREZIUERID

JUBLIUOIIAUS

JUBLIUDAIAUT A8120583usIajund

Figure G.4 N4 and N6

124

ConferenceSociety : Environment

environment
OrganizationlinhgbitEnvironment
organization

LocalConference : Organization

organizationalContext | organization |organization
role] Organizer : Role
RoleOfOrganization
superRole
RoleHigrarchy
subRaole
Reviewer : Role |role GoalofRole 90all reviewPapers : Goal
RoleOfOrganization role
restrictRoleBehavior resource
NormAssighmentRole
ResourceAssighment
roleHasMNorm action
NorminContextOrganization N7 : NormObligation |iSAssianed access| aehieveReviewPapers : AomicAchieve
norminContext ActionAssignmentNarm

isConstrainedBy

NormConstrajntAssignment

constraint notificationDeadline : Date
beforeNotificationDeadline - Before [PEfareConstraint heforeDate | 4, - 34
BeforeDate month = 03
year= 2011

Figure G.5 N7

125

ConferenceSociety : Environment

environment

QOrganizationinhahitEnvironment

organization

LacalCanference : Organization

organizationalContext| organization |organization rotocol
role] Organizer: Rale P authorNotificationProtocol ; Protocal
RoleOfOrganization
superRole sendingProtocol
PratocplOfRole
RoleHigrarchy MessageSentByProtocol
subRale messageSent
RoleOfOrganization [- terenceChair: Role |0l authorhotification : Message
rale
restrictRoleBehavior resource
NormAssighmentRole .
ResourceAssignment
roleHasNorm action
NorminContextOrganization N§ : NormObligation [iSAssigned access| gpngAuthorNotification : AMtormicSend
narminContext ActionAssignmentiNorm
isConstrainedBy
NormConstra|ntAssignment
constraint notificationDeadline : Date
iflotificationDeadline : If |conditionalConstraint conditionalDate day= 31
Qperamr: equaﬂ'o ConditionalDate month =03
year= 2011

Figure G.6 N8

126

[IERELCEN
aunosal

Ay Ly J0ge

Juauufissyacnosay

puessdoisiy pueladopuodas | Jeleg . aweu

pueladgieuonpuo)

JUIEASUO)[EUPUDI

8l0u0saleg

8l0di0e09

|eof

ani = anjes

puesadopuodss

E09 - PaIvIR0E 8RN [iradorein /

1107 =deak
10 = Yuow
16 =fep

puesadoetonpuad

JUIEASUO)[EUONIPU0D

0][enba =Jojelado

T pafaaaviate f
JuERsu0d

UHONJQUORIUES JUiejsU0I

HSUDJUMON

aufilssys!
Agpaulensuos|

aoQUIuLOU

0](enha =J0jesado JUHON

11" BWENPaSUDaZONIOLIN

Agnautensuogsi| UONERIGOUMON -0

EEEEI RE e

8jeq aulpeaquoneqsinsal

ECRELED)

alegaioeg

AN - BIUBIANC B aLeTIaE |ssane T
uoje
JuauuIssyagIn0say
uopuegsey aunosal
JUBUIGSIng - UOTEIOR0IN _ _ I R)
pauflssys
uiopsal|ddyuogaueg
oNpaldde
3|0gBWUBISSYULON sy 1 yojeznefioi0sloy
“0IN Tuonserelor iomeyagajogpmsal| 2108 - MEUD3IURIBN0D [50uane™ s ouradns | 2108 -18ZNENIO. 57
auoQuuIou 307
uonezeRIo)o8I0N uopezuelio | MeluegiRUDREZIUeRI0

UoREZIUERIONEODUUUON

TONEZIUERI) . BaUAIaJuO) eI]

Mauog|euolezIuefio
uopeziuefiio

UBLIUOIAUSHEYUOREZIUERI)

JUBUIUGIS - RB1905a0UBIBM0Y

Figure G.7 N9 and N10

127

3|04l0[e09
|eoh 1107 =1eak
ani} = anjea #0 = Luow
E00 - PaldaIwIatedareY [pueradorey PUBIBAOPUDIBS| FRER T paralyIvnalda) vIate Jarey LES4ER
pueiadoletompuod 31Eq ; aUPEagUONENSnEal
B CREED]
JUIBASUDD[EUORIPUDI
0]|enba =Jojesado
1 padaasyiadedl : ajeqainiag
T 31038 - BUIINEaQUONENSIIagaIRd [Tuensuogaioeg

WUBLIUAISSYUlBASUDDULION

UWLONIQUORIURS

uolauessey

I |
L Agpaulelsuo)si

JUIENSU0D

aLUBISSHUIBSUODULION

fgpaulensuogsi

ULONIUBLIUBISSYUOND

BINI8%3 010Ny - 8IUBIBUOIIBISINa amaa%a |ssanie

paufissyst| YORERIGOWUON BN

HAUODUILLOU
uoneZIuERIQKaUODUIULON

uone UlopnSeHal0d

awufissyannosay

82Inosal l0laeyaga|oyiouisal

3|0 5uaLILUBISSYULON

ajol

uolae ajod
paie|dAuaga|oiouoy

UoNIyuahy aauslaiunoyialsibel 310y - 0Ny

UDISSILIB4UUON & | LN

3|04 yoneziuefiol0s|0y

paufissys| galogiamsal
uuoNsaldayuoiues 3 1SSYLUION
wioppaldde 301
paufissysi 820e uojae 32inosal

uoieziuefIQ0a|0y

A0 UILLIOU

LUONUBWUBISSYUOY

HLWILLOD IO [18xeadgSyILuLInd 3|04 . 1a4eadg

WBWIUAISSYaIN0Say

E]

UoNEZIUERIQAIUODUILLION

uoneziuefio| uoneziuefio | MEUODEUOIEZIUERID

pajuoseuoleziuefio

UONEZIUERIQ - 80UaIBJuU0D|Ed0

uofeziueflo

JuBLIUOIAUTNGEYUUONeZIUERIO

JuauoIAUS

JUBIUOIIAUT - 4B10580U81aju00)

Figure G.8 N9 and N11

128

APPENDIX H: Conflict Cases

In the following we illustrate all the NormML conflict cases implemented by the
check for conflicts operations. The check for conflicts of NormML was presented

before in Section 3.4.

Context

Let's consider the conflict cases of the context analysis. It is important to
check for conflicts: (i) if the norms are defined in the same context; (ii) if one norm is
defined in the context of an environment, and the other in the context of an
organization that inhabits such an environment; and (iii) if one norm is defined in the
context of an organization and the other in the same hierarchy of organizations.

The context of a norm determines the scope where the norm is applied, i.e.,
the scope where the agents must fulfill the norm. According to the NormML
metamodel (see Figure 3.10), a norm can be defined in the context of an
environment or in the context of an organization. Organizations inhabit environments
and might be composed of sub-organizations. Thus, let'’s consider the set of possible

context relations between two norms.

Possible First norm Second norm context
cases context

(@) An environment X An environment X

(b) An environment X An environment Y

(c) An organization a An organization a

(d) An organization a An organization b

(e) An organization a | An organization c that is sub-organization of the organization
a

) An organization a | An organization c that is sub-organization of the organization
b

(9) An environment X An organization a that inhabits the environment X

(h) An environment X An organization a that inhabits the environment Y

Table H.1 Possible context relations between two norms

When analyzing the contexts of two norms we need to observe if their contexts

are related, i.e. if the scope of their application intersects. If the contexts of the norms

129

are not related, there is no need to keep looking for conflicts because the norms
defined in not related contexts are not related to each other, and thus cannot conflict.

The cases (a), (c), (e) and (g) of Table H.1 may result in conflicts because the
scope of application of the two norms intersects: the cases (a) and (c) are covered by
item (i); the case (g) is covered by item (ii); and the case (e) is covered by item (iii).
The cases (b), (d), (f) and (h) cannot result in conflicts because the scope of the first
norm will never intersect with the scope of the second norm, so the norms contexts

are not related.

Involved Entities

Let’'s consider the conflict cases of the involved entities of the norms. The
involved entities of a norm are the entities whose behavior is being restricted by the
norm. As illustrated in Figure 3.4 of chapter XXXX, a norm in NormML can regulate
the behavior of: an agent, a role (i.e. all agents that play a given role), a specific
agent when it is playing a given role, an organization (i.e. all agents that play roles in
an organization), an sub-organization when it is playing a role (i.e. all agents that play
roles in an sub-organization while such sub-organization is playing a role in its super-
organization) and, an environment (i.e. all agents that inhabit an environment).

Therefore, It is necessary to check for conflicts: (i) between norms applied to
the same entity; (ii) between a norm defined to a role and a norm defined to an agent
or a sub-organization that can play that role; (iii) between norms applied to different
roles played by the same agent or sub-organization; (iv) between norms applied to
roles in the same hierarchy of roles; (v) between the norms of an organization and
norms of roles, agents and sub-organizations of this organization; and (vi) between
the norms of an environment and norms of agents and organizations of this
environment. Table H.2 illustrates the set relationships between the involved entities

of two norms.

Possible First norm involved entity Second norm involved entity
cases
(a) An agent agl An agent agl
(@) An agent agl An agent ag2
(b) Arolerl Arolerl

130

Possible First norm involved entity Second norm involved entity
cases
(b) Arolerl Arole r2
(c Arolerl A role r3 that is sub-role of the role r1
(c) Arolerl A role r3 that is sub-role of the role r2
(d Arolerl An agent agl that can play the role r1
(d) Arole r2 An agent agl that cannot play the role r2
(e) Arolerl A sub-organization sl that can play the role rl
(e) Arole r2 A sub-organization s1 that cannot play the role
r2
) A role r2 that can be played by an A role r3 that can also be played by the agent
agent agl agl
() A role r2 that can be played by an A role rl that cannot be played by the agent
agent agl agl
(9) A role r2 that can be played by a A role r3 that can also be played by the sub-
sub-organization s1 organization s1
(9) A role r2 that can be played by a A role rl that cannot be played by the sub-
sub-organization s1 organization s1
(h) An agent agl while playing a given An agent agl while playing the same given
role rl role rl
(h") An agent agl while playing a given An agent agl while playing a given role r2
role rl
(h™) An agent agl while playing a given An agent ag2 while playing the same given
role rl role rl
0] A sub-organization s1 while playing A sub-organization s1 while playing the same
a given role rl given role rl
(i) A sub-organization s1 while playing A sub-organization s1 while playing a given
a given role rl role r2
(i) A sub-organization s1 while playing A sub-organization s2 while playing the same
a given role rl given role rl
0] An organization orgl An organization orgl
() An organization orgl An organization org2
(K An organization orgl An agent agl of the organization orgl
(K) An organization orgl An agent agl of the organization org2
0] An organization orgl A role rl of the organization orgl
(" An organization orgl A role rl of the organization org2
(m) An organization orgl An organization org3 that is sub-organization
of the organization orgl
(m’) An organization orgl An organization org3 that is sub-organization
of the organization org2
(n) An environment envl An environment envl
(n’) An environment envl An environment env2
(0) An environment envl An agent agl that inhabits the environment
envl
(o) An environment envl An agent agl that inhabits the environment
env2
(p) An environment env1l An organization orgl that inhabits the

environment envl

An environment envl

An organization orgl that inhabits the
environment env2

Table H.2 Possible involved entities relations between two norms

When analyzing the involved entities of two norms we need to observe if their

involved entities are the same or if their involved entities are related, i.e. if there are

any relations between entities whose behavior are being regulated by the norms.

131

These relations are defined by the relationships AgentPlayingRole,
AgentOfOrganization, AgentinhabitsEnvironment, SubOrgPlayingRole,
OrganizationComposition, RoleHierarchy, RoleOfOrganization and
OrganizationinhabitEnvironment of the NormML metamodel (see Figures 3.3 and 3.9
in chapter XXX). If the entities of the norms are not related, i.e., if they apply to
entities that are not related to each other, the norms are not in conflict.

The cases (a), (b), (c), (d), (e), (f), (9). (h), (i), (), (k). (I), (), (n), (0) and (p) of
Table H.2 may result in conflicts because the involved entities of the two norms are
related to each other: the cases (a), (b), (h), (i), (j) and (n) are covered by item (i); the
cases (d) and (e) are covered by item (ii); the cases (f) and (g) are covered by item
(iii); the case (c) is covered by item (iv); the cases (k), (I) and (m) are covered by item
(v) and; the cases (0) and (p) are covered by item (vi).

The cases (@), (b), (¢), (d), (€'), (F), (), (), ("), ("), ("), ("), (K), (), (M),
(n’), (0') and (p’) cannot result in conflicts because the involved entity of the first norm

are not related to the involved entity of the second norm by any way.

Deontic Concept

In 1951, Georg Henrik von Wright published a pioneer plausible system of
deontic logic (von Wright, 1951). His work was discussed and refined by various
researchers, resulting in the so-called standard deontic logic (Fgllesdal and Hilpinen,
1971).

The standard deontic logic has three operators O, P and F that represent
respectively the deontic concepts of obligation, permission and prohibition. According
to the standard deontic logic there is a deontic inconsistency when there is a O(p)
and a F(p) or a P(p) and a F(p). Also each O(p) implies in a P(p). Another important
point to consider about deontic logic is: if there is a O(p) and a O(~p) it is said that
they are mutually contradictory obligations, and the same is valid to prohibitions.

With NormML it is possible to describe norms using the three deontic
concepts: obligation, permission and prohibition (see Figure 3.3). Considering the
conflict cases of the deontic concept analysis based on the standard deontic logic,

two norms may be in conflict if: (i) one norm states a permission and another states a

132

prohibition; (ii)) one norm states an obligation and another states a prohibition; and
(i) one norm states a permission and another one states an obligation in the period
the permission is not activated; and (iv) both norms state an obligation or both norms
state a prohibition to do opposite actions. Thus, let’s consider the set of possible

deontic concepts relations between two norms.

Possible cases | First norm deontic concept | Second norm deontic concept
(@) Obligation Obligation
(b) Prohibition Prohibition
(c) Permission Permission
(d) Obligation Prohibition
(e) Obligation Permission
)] Prohibition Permission

Table H.3 Possible deontic concepts relations between two norms

The cases (a), (b), (d), (e) and (f) of Table H.3 may result in conflicts: the case
(f) is covered by item (i); the case (d) is covered by item (ii); the case (e) is covered
by item (iii); and the cases (a) and (b) are covered by item (iv). The case (c) is the
only that cannot result in conflicts because a permission do not affect the influence of

another permission.

Action

After the checking of the deontic concept, the next element to be examined is
the action of the norms. Let’s consider the three conflict cases of the action analysis.
If one of the cases (d), (e) or (f) of the deontic concept analysis is true, it is important
to check if the actions being regulated by the norms are of: (i) the same type on the
same resource; or (ii) related types on the same or related resources (as defined in
the dialect action hierarchy, see Appendix B).

If one of the cases (a) or (b) of the deontic concept analysis is true, so, it is
important to check if the actions of the norms are (iii) semantically opposite and
restrict the access of the same resource (see Appendix D to the complete list of
semantically opposite actions). Actions of that kind are analyzed because they are

mutually contradictory when they refer to the same resource.

133

Thus, let’s consider the set of possible actions relations between two norms

based on the relations of the actions dialect of NormML.

Possible First norm action Second norm action
cases

(@) An action actl on a An action actl on a resource resl
resource resl

(b) An action actl on a An action actl on a resource res2
resource resl

(c) An action actl on a An action act? related to the action actl on a resource resl
resource resl

(d) An action actl on a An action act? related to the action actl on a resource res2
resource resl related to the resource resl

(e) An action actl on a An action act? related to the action actl on a resource res2
resource resl not related to the resource resl

4] An action actl on a An action act2 not related to the action actl on a resource
resource resl resl

(9) An action actl on a An action act2 semantically opposite to the action actl
resource resl on a resource resl

(h) An action actl on a An action act2 semantically opposite to the action act1
resource resl on a resource res2

Table H.4 Possible actions relations between two norms

The cases (a), (c), (d) and (g) of Table H.4 may result in conflicts because the
actions of the norms are related to each other according to the actions dialect of
NormML: the case (a) is covered by item (i); the cases (c) and (d) are covered by
item (ii); and the case (g) is covered by item (iii). The cases (b), (e), (f) and (h) cannot
result in conflicts because the norms actions are not related to each other or because

they apply to different resources.

Activation Constraints

Finally, let’s reflect on the conflict cases of the activation constraints analysis.
Two norms may be in conflict: (i) if one norm is not constrained by any period of time;
(i) if the periods established by actions and dates of the invariants Before, After,
Between and If intersect; (iii) in case of two If conditions, if the values related to the
same attribute or belief intersects (e.g.: x>10 and x=15); and (iv) in case of two If

conditions, if the values related to the same goal are equal.

134

Norms have a period during while they are active, i.e., during while their

restrictions must be fulfilled. To describe this activation period of a norm one can

define constraints to it. Norms can be activated by one constraint or a set of

constraints. NormML has four kinds of norm constraint: before, after, between and if

(see Figure 3.7). The before, after and between constraints can be associated with

actions or dates, and the if constraint can be associated with a date, a belief, a goal

or an attribute. In Section 3.2.4 it is explained in details how each norm constraint of

NormML can be used to describe the activation period of a norm. Thus,

let's

consider the set of possible activation constraints relations between two norms
illustrated in Table H.5.

Possible First norm activation constraint Second norm activation constraint
cases
(a) None None
(b) None A before, after, between or if constraint
(c) A before constraint associated with an | A before constraint associated with an action a
action a
() A before constraint associated with an | A before constraint associated with an action b
action a
(d) An after constraint associated with an | An after constraint associated with an action a
action a
(d) An after constraint associated with an | An after constraint associated with an action b
action a
(e) A before constraint An after constraint
() A between constraint associated with | A between constraint associated with a before
a before action a and an after action b action a and an after action b
) A between constraint associated with | A between constraint associated with a before
a before action a and an after action b action a and an after action c
() A between constraint associated with | A between constraint associated with a before
a before action a and an after action b action ¢ and an after action b
) A between constraint associated with | A between constraint associated with a before
a before action a and an after action b action ¢ and an after action d
(9) A between constraint associated with | A before constraint associated with an action a
a before action a and an after action b
(9) A between constraint associated with | A before constraint associated with an action b
a before action a and an after action b orc
(h) A between constraint associated with | An after constraint associated with an action b
a before action a and an after action b
(h") A between constraint associated with | An after constraint associated with an action a
a before action a and an after action b orc
0] A before, after or between constraint A before, after or between constraint
associated with actions associated with dates
0] A before, after or between constraint An if constraint
associated with actions
(k) A before, after, between or if An if constraint associated with beliefs,
constraint associated with dates attributes, goals or values
0] A before constraint associated with a | A before constraint associated with a date b <
date a date a
(" A before constraint associated with a | A before constraint associated with a date b >
date a date a

An after constraint associated with a

An after constraint associated with a date b >

135

Possible First norm activation constraint Second norm activation constraint
cases
date a date a
(m’) An after constraint associated with a An after constraint associated with a date b <
date a date a
(n) A before constraint associated with a | An after constraint associated with a date b <
date a date a
(n) A before constraint associated with a | An after constraint associated with a date b >
date a date a
(0) A between constraint associated with | A between constraint associated with a before
a before date a and an after date b action c and an after actiond < a
(o) A between constraint associated with | A between constraint associated with a before
a before date a and an after date b action c and an after actiond > a
(p) A between constraint associated with | A before constraint associated with a date ¢ >
a before date a and an after date b b
(p) A between constraint associated with | A before constraint associated with a date ¢ <
a before date a and an after date b b
()] A between constraint associated with | An after constraint associated with a date c <a
a before date a and an after date b
(@) A between constraint associated with | An after constraint associated with a date c > a
a before date a and an after date b
)] An if constraint associated with a date An if constraint associated with a date a
a
(r) An if constraint associated with a date An if constraint associated with a date b
a
(s) An if constraint associated with a date | A before constraint associated with a date b >
a a
(s) An if constraint associated with a date | A before constraint associated with a date b <
a a
® An if constraint associated with a date | An after constraint associated with a date b < a
a
t) An if constraint associated with a date | An after constraint associated with a date b > a
a
(u) An if constraint associated with a date | A between constraint associated with a before
a action b and an after action c, wherec<a<b
(u’) An if constraint associated with a date | A between constraint associated with a before
a action b and an after action c, where c <aor a
>b
(v) An if constraint associated with an An if constraint associated with an attribute a
attribute a with a value v with a value v’that intersects v
(V) An if constraint associated with an An if constraint associated with an attribute a
attribute a with a value v with a value v’ that does not intersect v
(v) An if constraint associated with an An if constraint associated with an attribute b
attribute a
) An if constraint associated with a An if constraint associated with a belief a with
belief a with a value v a value v’that intersects v
(X)) An if constraint associated with a An if constraint associated with a belief a with
belief a with a value v a value v’that does not intersect v
(x) An if constraint associated with a An if constraint associated with a belief b
belief a
(w) An if constraint associated with a goal | An if constraint associated with a goal a with a
a with a value v value v’ =v
(W) An if constraint associated with a goal | An if constraint associated with a goal a with a
a with a value v value v’ <> v
(w”) An if constraint associated with a goal An if constraint associated with a goal b
a
(y) An if constraint associated with an An if constraint associated with a belief
attribute
(y) An if constraint associated with an An if constraint associated with a goal

136

Possible First norm activation constraint Second norm activation constraint
cases
attribute
(2) An if constraint associated with a An if constraint associated with a goal
belief

Table H.5 Possible activation constraints relations between two norms

The activation period of a norm corresponds to the period when the entities of
the norm must fulfill the norm. When analyzing the activation constraints of two
norms we need to observe if they can be active at the same time. If they cannot be
active at the same time they cannot conflict because the entities of the norm will be
able to fulfill the two norms separately.

The cases (a), (b), (c), (d), (), (F), (f"), (). (h), (&), (m), (n), (0), (p), (). (1), (s),
(®), (u), (v), (x) and (w) of Table H.5 will result in conflicts because the two norms will
be active at the same time interval: the cases (a) and (b) are covered by item (i); the
cases (c), (d), (f), (F), (F), (9), (h), (&), (m), (n), (0), (p), (@), (1), (s), (¥) and (u) are
covered by item (ii); the cases (v) and (x) are covered by item (iii); and the case (w) is
covered by item (iv).

The cases (I'), (m’), (n*), (0'), (P’), (d'), ('), (s'), ('), (U’), (V'), (X') and (W’) cannot
result in conflicts because the two norms will never be active at the same time. Our
approach assumes that the cases (¢’), (d’), (e), (f”), (g’), ('), (i), (i), (k), (V’), (X7),
(w”), (y), (y’) and (z) are also not in conflicts because these cases cannot be

analyzed at design time.

