Abstract of Thesis presented to UFF as a partial fulfillment of the requirements for

the degree of Master of Science (M.Sc.)

The Hybrid Metaheuristic DM-GRASP:

New Applications and Parallelization

Luis Filipe de Mello Santos

December/2006

Advisors: Alexandre Plastino de Carvalho and Simone de Lima Martins

Department: Computer Science

Metaheuristics are among the most important tools for solving computationally

intractable problems efficiently. Previous research results demonstrated that the

hybridization of these methods with other techniques has the potential to improve

their performance and robustness. Recently, a hybrid version of the metaheuristic

GRASP that incorporates a data mining process, called DM-GRASP, was proposed.

The application of this method to the Set Packing Problem achieved promising

results.

One of the goals of this work was to evaluate the performance of DM-GRASP

in the context of other Combinatorial Optimization problems. Two problems were

considered: the maximum diversity problem and the problem of server replication

for reliable multicast transmission. The results demonstrated that the method is

capable of achieving better solutions than the original GRASP. In addition, the

execution times are significantly reduced.

The evolution of parallel and distributed computing technology provided a great

increase in computational power available to applications. Another contribution

of this work is the evaluation of parallel implementations of DM-GRASP. Parallel

versions of the hybrid metaheuristic were developed for both problems mentioned

earlier. Experimental results evidenced the method's scalability in relation to the

number of processors used, especially when a dynamic load balancing strategy is

implemented.

iv